项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松copy复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全栈开发),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助 【资源内容】:项目具体内容可查看/点击本页面下方的*资源详情*,包含完整源码+工程文件+说明(若有)等。【若无VIP,此资源可私信获取】 【本人专注IT领域】:有任何使用问题欢迎随时与我联系,我会及时解答,第一时间为您提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【适合场景】:相关项目设计中,皆可应用在项目开发、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面中 可借鉴此优质项目实现复刻,也可基于此项目来扩展开发出更多功能 #注 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担 2. 部分字体及插图等来自网络,若是侵权请联系删除,本人不对所涉及的版权问题或内容负法律责任。收取的费用仅用于整理和收集资料耗费时间的酬劳 3. 积分资源不提供使用问题指导/解答
2025-06-26 05:04:31 9.07MB
1
为了降低带式输送机传统恒定功率工作模式下的功耗,采用图像处理的方法对带式输送机实时煤炭量检测技术进行了研究,并设计了基于图像处理的煤炭量AI识别系统。研究表明:该系统可以实现常规煤量检测的需求,并能够配合输送带进行功率调节,同时具有体积小、成本低、准确度高、安装便捷的优点,为当前的煤量检测提供了新的自动化解决方案。
2025-06-19 17:17:28 995KB 煤炭输送 图像处理
1
deepseek。基于deepseek模型的OCR文字识别系统。DeepSeek OCR 是一款依托于 DeepSeek AI 模型构建的先进文字识别工具,专注于利用图像识别技术精准提取图片内的文字内容。在该项目中,借助 DeepSeek API 实现了 OCR 功能,它兼容多种上传途径,比如直接上传文件或通过 URL 上传图片。 在当今信息时代,文字识别技术(OCR)已经成为处理大量文档和图片中的文字数据的关键工具。DeepSeek OCR 系统是其中的一个代表性产品,它利用先进的图像识别技术和深度学习模型,为用户提供了一个高效、准确的文字提取解决方案。这款系统不仅仅是一个简单的文字识别工具,它是基于DeepSeek AI技术构建,集成了复杂的数据处理和机器学习算法,使得文字识别的准确度和效率都得到了显著提升。 DeepSeek OCR 的工作原理是通过训练深度神经网络来理解和解析图像中的文字内容。通过大量的文字样本和图像数据训练,模型能够识别各种字体、大小的文字,并且能在不同的背景和光照条件下工作。系统设计者们通过精心设计的网络结构和算法优化,使得DeepSeek模型在处理复杂场景下的文字识别任务时也展现出优越的性能。 在实用性方面,DeepSeek OCR 提供了多种便捷的文字录入方式,用户可以通过直接上传文件或提供图片的URL来实现文字的快速提取。这一特点使得DeepSeek OCR系统不仅适用于传统的文档扫描和数据录入任务,同样适用于网络图片中文字信息的抓取和处理,极大地扩展了它的应用场景。无论是企业用户还是个人用户,都可以通过这种方式轻松获取图片中的文字信息,进行进一步的数据分析和处理。 系统的背后是强大的DeepSeek API,这是一个开放的接口,允许开发者在自己的应用程序中集成DeepSeek OCR功能。这意味着无论是创建新的应用程序还是对现有系统进行升级,开发者都可以利用这一技术来提高产品的智能化水平。由于DeepSeek模型已经预训练好,因此开发者可以跳过复杂的训练过程,直接使用API进行高效的文字识别。 标签“deepseek AI OCR 文字识别”概括了这个系统的三个核心要素:DeepSeek AI技术提供了技术基础,OCR技术使得系统可以对图像中的文字进行识别,而“文字识别”是这一技术应用的核心目的。这三者结合在一起,不仅代表了一个具体的识别工具,更体现了人工智能技术在实际应用中的巨大潜力。 基于DeepSeek模型的OCR文字识别系统是一个集成了尖端技术的智能文字识别工具,它不仅提高了文字识别的准确性和效率,而且提供了灵活的使用方式和强大的开发者支持,为各领域提供了强大的数据处理能力。随着人工智能技术的不断进步,这种类型的工具将会在信息提取、数据分析等方面发挥越来越重要的作用。
2025-06-17 14:17:44 427KB AI OCR 文字识别
1
随着人工智能技术的快速发展,深度学习在医学图像分析领域展现出巨大的应用潜力。在本项目中,我们关注的是骨龄检测识别系统的开发,该系统基于深度学习框架PyTorch实现,采用Pyside6进行图形用户界面设计,而YOLOv5模型则作为主要的骨龄检测识别算法。YOLOv5是一种先进且快速的对象检测算法,它能够实时高效地识别和定位图像中的多个对象。在本系统的构建过程中,YOLOv5模型将被训练用于识别儿童手腕X光图像中的骨骼特征,并据此推断出相应的骨龄。由于骨龄是评估儿童和青少年生长发育的重要指标,因此该系统在儿科医学诊断中具有重要的应用价值。 在本系统的开发过程中,项目使用了多个文件来维护和说明。其中,CITATION.cff文件用于规范引用格式,以便其他研究者可以准确引用本项目的研究成果。.dockerignore、.gitattributes、.gitignore文件则涉及项目版本控制和容器配置,这些文件用于设置哪些文件应被版本控制系统忽略或特殊处理。tutorial.ipynb文件是一个交互式的Python笔记本,可能包含了使用本系统进行骨龄检测识别的教程或示例代码,这对学习和使用本系统具有实际指导意义。 此外,项目中还包括了一个图片文件555.jpg,虽然具体内容未知,但根据命名推测,它可能被用作YOLOv5模型训练或测试中的样本图像。LICENSE文件包含了本项目所采用的开源许可证信息,它对项目如何被使用、修改和重新分发做了规定。README.zh-CN.md和README.md文件分别为中文和英文版本的项目说明文档,它们提供了关于项目的详细信息和使用指南。CONTRIBUTING.md文件用于指导其他开发者如何为本项目贡献代码,这是开源文化的重要组成部分。 本项目是一个高度集成的系统,它将深度学习、图像识别和友好的用户界面完美结合,为医学影像分析领域提供了一种新颖的解决方案。通过使用YOLOv5模型,系统在骨龄检测方面展现出了高效的性能和准确的识别效果。与此同时,系统的设计充分考虑了实用性、可扩展性和开放性,它不仅能够满足专业人士的需求,同时也为开发者社区提供了一个可供贡献和改进的平台。
2025-06-10 21:39:43 406.37MB python 图像识别 yolo 深度学习
1
MATLAB车牌识别系统是基于MATLAB平台开发的一套用于车牌识别的软件系统。该系统主要利用MATLAB的图像处理和模式识别能力,通过对车牌图片进行预处理、特征提取和分类识别等步骤,实现对车牌信息的识别和提取 系统的主要步骤包括: 1. 图像预处理:包括图像灰度化、二值化、去噪等操作,将车牌图像转换为适合进行下一步处理的形式; 2. 特征提取:提取车牌图像中的特征信息,如字符区域、字符边界等; 3. 字符分割:将车牌图像中的字符区域进行分割,分离出每个字符; 4. 字符识别:对每个字符进行识别,利用模式识别算法或者深度学习算法对字符进行分类,得到字符标识; 5. 结果输出:将识别结果进行整合、处理并输出,通常以文本形式展示识别出的车牌信息。 MATLAB车牌识别系统能够根据实际需要进行相应的功能扩展和优化,也可以与其他系统进行集成,提供更加丰富、智能化的车牌识别服务。
2025-06-03 20:13:58 719KB matlab
1
基于卷积神经网络(Convolutional Neural Network, CNN)的车牌自动识别系统是一种计算机视觉应用,它利用Matlab平台结合深度学习技术来处理和识别车辆上的车牌号码。CNN特别适用于图像处理任务,因为它们能够从局部像素信息学习到全局特征,这在车牌字符识别中非常关键。 在Matlab中构建这样的系统一般包含以下步骤: 数据预处理:收集并清洗车牌图片数据集,将其转换成适合CNN输入的格式,如灰度图、归一化等。 模型构建:设计CNN架构,通常包括卷积层、池化层、全连接层以及可能的Dropout层,用于特征提取和分类。 训练网络:使用预处理后的数据对模型进行训练,通过反向传播算法调整权重,优化损失函数,例如交叉熵。 特征提取:在训练好的模型上,将新来的车牌图片作为输入,提取其高层特征表示。 识别阶段:利用特征向量,通过 softmax 函数或其他分类方法预测车牌上的字符序列。 后处理:可能需要对识别结果进行校验和清理,比如去除噪声字符,纠正错误等。
2025-06-01 20:56:15 287.1MB matlab 神经网络
1
这是一个基于Java Web和JavaScript开发的图片文字识别系统,利用了百度的API来实现高效准确的文字识别功能。这个项目的核心在于模拟QQ的截图工具,并结合OCR(Optical Character Recognition,光学字符识别)技术,将捕获的图像中的文字转换为可编辑的文本。以下是关于这个系统的一些关键知识点和实现细节: 1. **图片截图功能**:系统中包含了一个类似于QQ截图的模块,用户可以通过Web界面或JavaScript控制来截取屏幕上的任何区域。这通常涉及浏览器插件或者使用HTML5的`canvas`元素结合`getUserMedia` API来实现屏幕捕捉。 2. **JavaScript与Java的交互**:前端JavaScript负责用户交互和截图操作,而后端Java处理图像识别和业务逻辑。两者之间通过AJAX或者WebSocket进行通信,将截图图像数据发送到服务器。 3. **图像上传处理**:截取的图片会被上传至服务器,可能需要进行压缩、格式转换等预处理步骤,以减小传输成本和优化识别效率。 4. **百度OCR API集成**:该系统使用了百度提供的OCR服务,通过调用其RESTful API来进行文字识别。需要在后台配置百度API的密钥,并在请求中附带这些凭证,以获取返回的识别结果。 5. **百度API调用**:通常,调用API涉及HTTP POST请求,包含图片数据以及参数设置(如识别语言、是否需要结构化输出等)。返回的JSON数据解析后,可以提取出识别出的文字。 6. **后端处理**:服务器接收到API的响应后,会解析JSON,提取识别出的字符串,然后返回给前端展示。可能还需要处理错误情况,例如网络问题、API调用限制等。 7. **前端展示**:JavaScript将接收到的识别结果展示给用户,可以是简单的文本框显示,也可以是高亮显示在原始截图上,便于用户校对和复制。 8. **代码注释**:项目中包含详细注释,这对于理解和学习系统工作原理非常有帮助。良好的代码注释是代码可读性和可维护性的重要保证。 9. **即插即用**:据描述,此系统设计得相当成熟,开发者可以直接导入使用,无需做过多的修改,这表明它具有较高的可复用性和兼容性。 10. **适应性**:由于系统依赖于百度OCR服务,因此对于不同的语言识别可能有不同的准确度。同时,系统可能需要根据网络环境和服务器性能进行优化,以保证快速响应和低延迟。 这个项目对于学习和实践OCR技术,以及前后端交互是一个很好的实例。开发者可以从中学到如何整合第三方服务,处理图像数据,以及构建高效的Web应用。同时,对于想要提升自己在Java Web和JavaScript领域技能的人来说,也是一个宝贵的资源。
2025-05-29 09:17:29 154KB java web baidu
1
"深度学习YOLOv8+Pyqt5联合打造实时吸烟行为检测系统:完整源码+数据集+详细说明,助力禁烟政策执行",基于深度学习YOLOv8与Pyqt5集成,全方位公共场所抽烟检测与识别系统,附带全套源码及详细指南——轻松构建、跑通与定制升级,基于深度学习YOLOv8+Pyqt5抽烟吸烟检测识别 将获得完整源码+数据集+源码说明+配置跑通说明 可以额外付费远程操作跑通程序、定制其他课题 支持图片、视频、摄像头检测 在现代社会,公共场所的禁烟政策越来越严格,以减少二手烟对非吸烟者的影响。 然而,监管和执行这些政策仍然面临挑战。 本文提出了一种基于YOLOv8(You Only Look Once version 8)的抽烟检测系统,该系统结合了深度学习技术和PyQt5图形用户界面框架,旨在实时监测并识别公共场所中的吸烟行为。 该系统的设计考虑了实时性、准确性和用户友好性,为提高公共场所的空气质量和遵守禁烟规定提供了。 ,基于深度学习; YOLOv8; Pyqt5; 抽烟检测识别; 完整源码; 数据集; 配置跑通说明; 远程操作; 定制课题; 图片/视频/摄像头检测; 禁烟政策; 实时监测;
2025-05-28 15:49:00 1.91MB csrf
1
内容概要:本文档详细介绍了一款基于计算机视觉和机器学习技术的手写数字识别系统的开发设计全过程。内容包含了指尖追踪技术的深入探讨、涂鸦绘制功能介绍和数字识别技术的实际应用案例演示。与此同时,文中列举了详细的开发路线图,为研发团队指明了项目方向,还提出了系统实施过程中可能出现的难题及对应解决方案。 适合人群:适合从事软件开发,特别是在计算机视觉、图像处理及深度学习领域的研究人员及专业开发者阅读。 使用场景及目标:可用于开发具有指纹跟踪与手写识别技术的应用程序,在教育辅导写字训练,游戏创作,美术创意设计等领域发挥重要作用。 其他说明:该应用具备良好的兼容性和高度可扩展性。通过优化系统功能和不断提升用户友好性,力求打造出一款兼具创新性、实用性与市场潜力的作品。
2025-05-26 13:11:02 1.01MB 计算机视觉 深度学习 图像处理
1
计算机毕业设计源码:基于Python车牌识别系统 深度学习 建议收藏 PyQt5+opencv Python语言、PyQt5、tensorflow、opencv、 单张图片、批量图片、视频和摄像头的识别检测 车牌识别其实是个经典的机器视觉任务了,通过图像处理技术检测、定位、识别车牌上的字符,实现计算机对车牌的智能管理功能。如今在小区停车场、高速公路出入口、监控场所、自动收费站等地都有车牌识别系统的存在,车牌识别的研究也已逐步成熟。尽管该技术随处可见了,但其实在精度和识别速度上还需要进一步提升,自己动手实现一个车牌识别系统有利于学习和理解图像处理的先进技术。 车牌识别的算法经过了多次版本迭代,检测的效率和准确率有所提升,从最初的基于LBP和Haar特征的车牌检测,到后来逐步采用深度学习的方式如SSD、YOLO等算法。车牌的识别部分也由字符匹配到深度神经网络,通过不断验证和测试,其检测和识别效果和适用性都更加突出,支持的模型也更为丰富。 网上的车牌识别程序代码很多,大部分都是采用深度学习的目标检测算法等识别单张图片中的车牌,但几乎没有人将其开发成一个可以展示的完整软件,即使有的也是比
2025-05-19 07:50:53 100.22MB 毕业设计 python 深度学习 opencv
1