1.自己复现的一个 Restormer 训练测试方法。 2.Restormer 对于显卡的要求很高,而且训练时间非常久,自己跑需要自行改变一些参数。 3.只需要将图片放入对应路径下就可以直接运行。 4.敲代码不易,希望能不吝支持,有问题欢迎交流。
2024-05-21 10:32:55 83.03MB 图像恢复 Transformer
本人带的一个本科毕设资料,内含全部可执行代码。包括YOLOV5复现,YOLOV5加注意力机制改进,成功将在VOC数据集上的精确度由76%提升至77%。 包括训练及测试代码,仅包括代码,本人已经调通,仅需要更改路径即可。不包含预训练权重,资源仅包含本人实现的全部代码,不包含论文,应对本科毕设足够。 预训练权重、论文模板、演示视频,可私信获取。
2024-05-12 16:38:32 7.53MB YOLO YOLOv5 注意力机制 毕业设计
1
时间序列预测没有任何问题-完整的训练测试输出
2024-04-08 14:48:15 84.44MB
1
Unet图像分割实战代码-以植物病虫害分割为例训练测试【源码分享】。 见博客https://blog.csdn.net/qq_42279468/article/details/129093132
2023-04-16 16:33:54 49B Python 图像分割 Unet 病虫害识别
1
基于pytorch实现的堆叠自编码神经网络,包含网络模型构造、训练、测试 主要包含训练与测试数据(.mat文件)、模型(AE_ModelConstruction.py、AE_Train.py)以及测试例子(AE_Test.py) 其中ae_D_temp为训练数据,ae_Kobs3_temp为正常测试数据,ae_ver_temp为磨煤机堵煤故障数据,数据集包含风粉混合物温度等14个变量 在程序中神经网络的层数和每层神经元个数没有固定,可根据使用者的输入值来构造神经网络,方便调试 autoencoder类在初始化时有三个参数,第一个是网络输入值,第二个是SAE编码过程的层数(编码、解码过程层数相同),第三个是是否添加BN层 这里为了构造方便,给每层神经元的个数与层数建立一个关系:第一层神经元的个数为2^(layer数+2),之后逐层为上一层的1/2
2023-04-13 21:52:14 15.8MB pytorch 堆叠自编码 神经网络 SAE
1
支持向量机仅将数据分为两类。 此函数通过为测试数据集中的每一行“搜索”正确的类来消除该限制。 这段代码是对Anand Mishra的代码的澄清和优化,可在此处找到: http://www.mathworks.com/matlabcentral/fileexchange/33170-multi-class-support-vector-machine 仅与 2 个以上的类一起使用,否则直接使用 svmtrain()。 用法示例: %% SVM 多类示例% SVM 本质上是一对一的分类。 % 这是一个如何使用% 一比一的方法。 训练集=[ 1 10;2 20;3 30;4 40;5 50;6 66;3 30;4.1 42]; 测试集=[3 34; 1 14; 2.2 25; 6.2 63]; GroupTrain=[1;1;2;2;3;3;2;2]; 结果 = multisvm(Tr
2023-02-18 13:51:09 2KB matlab
1
PaddleVideo,PaddleVideo代码与训练测试数据 PaddleVideo,PaddleVideo代码与训练测试数据 PaddleVideo,PaddleVideo代码与训练测试数据
2023-01-04 17:29:13 478.77MB PaddleVideo 代码 训练 大数据
weak 对决策树算法的实际应用 有训练和测试两部分,如果你是数据挖掘的新手,那么这个文档会告诉你如何使用weka用于实际的算法进行挖掘,保证让你满意
2022-12-28 14:50:05 603KB weak 决策树算法 训练 测试
1
搭建线性网络分离MNIST数据集,网络有较好的表现
2022-10-17 17:07:29 22.13MB 神经网络 深度学习
1
摘要包含Test Items(测试项目)Environment(环境)References(参考资料)Test Items – This should matc
2022-08-04 09:00:39 400KB 测试工具
1