该数据是通过裁剪人员后的图片,进行图像中手机的标注,适用于业务场景为先进行人员检测,再对人员图像中手机进行二次检测。 里面含有打电话数据共8201张,已进行标注和调整,有VOC标注格式和yolo标注格式两种,可直接用于YOLO的训练。也可转为自己想用的其他格式。 另有人员未打电话数据集10000多张,无标注内容。结合打电话数据集,可适用于分类模型的训练。 数据场景种类多,数据量大,数据质量高,实测yolov5目标检测训练效果好,模型可通用于各种场景下的识别,实际现场识别准确率能达到90%。
2024-12-02 10:11:37 932.17MB 数据集 目标检测 模型训练 深度学习
1
Facenet 训练LFW数据的权重文件
2024-11-28 18:13:06 88.68MB Facenet 训练LFW数据的
1
近期,小北参与了华为昇腾CANN训练营2024第二季的学习,这次训练营聚焦于Ascend C算子开发能力认证(中级),为我提供了一个深入学习昇腾AI基础软硬件平台的机会。通过系统的课程学习和实践操作,我不仅掌握了算子开发的基本技能,还了解了昇腾原生开发的全流程,这对于小北在大数据和AI领域的进一步研究具有重要意义。
2024-11-21 21:49:09 4.38MB AI
1
Matlab R2012b代码这些文件包含训练和测试连续条件神经场(CCNF)和连续条件随机场(CCRF)所需的库。 该项目已在Matlab R2012b和R2013a上进行了测试(不能保证与其他版本兼容)。 一些实验依赖于您机器上mex编译的liblinear()和libsvm()的可用性。 ---------------版权信息--------------------------------- ------ 版权可以在Copyright.txt中找到 ---------------代码布局--------------------------------- ---------------- ./CCNF-CCNF的训练和推理库./CCRF-CCRF的训练和推理库 ./music_emotion-音乐预测实验结果中的情绪//-运行实验的结果,比较了CCNF,CCRF,神经网络(无边缘的CCNF)和SVR模型的使用 ./patch_experts-用于补丁专家培训的训练代码(用于面部标志检测),可以在中找到使用这些补丁的标志检测器。 ccnf_training /-培训CCNF补丁专家(
2024-11-05 10:40:50 80.11MB 系统开源
1
在IT领域,尤其是在计算机视觉和深度学习中,数据集是训练模型的基础,特别是对于像YOLO(You Only Look Once)这样的目标检测神经网络。本文将详细介绍"RM2023雷达站所用到的yolo神经网络训练数据集"以及与之相关的知识点。 YOLO是一种实时目标检测系统,由Joseph Redmon等人于2016年提出。其核心思想是将图像分割为多个网格,并让每个网格负责预测几个边界框,每个边界框对应一个物体类别概率。这种设计使得YOLO能够快速且高效地处理图像,适合于像雷达站这样的应用场景,其中快速、准确的目标识别至关重要。 该数据集"RM2023_Radar_Dataset-main"针对的是RM2023雷达站的特定需求,包含了两类目标:车辆和装甲板。这表明该数据集可能专门用于训练YOLO或其他目标检测模型来识别这两种目标。通常,这样的数据集会包括图像文件以及对应的标注文件,标注文件中列出了每张图像中各个目标的坐标和类别信息,这对于训练神经网络至关重要。 在训练神经网络时,数据预处理是关键步骤。图像可能需要进行缩放、归一化或增强操作,如翻转、旋转等,以增加模型的泛化能力。数据集需要被划分为训练集、验证集和测试集,以便监控模型的性能并防止过拟合。 对于YOLO模型,训练通常涉及以下步骤: 1. 初始化模型:可以使用预训练的YOLO模型,如YOLOv3或YOLOv4,进行迁移学习。 2. 编译模型:配置损失函数(如多类别交叉熵)和优化器(如Adam),设置学习率和其他超参数。 3. 训练模型:通过反向传播和梯度下降更新权重,调整模型以最小化损失。 4. 验证与调优:在验证集上评估模型性能,根据结果调整模型结构或超参数。 5. 测试模型:在未见过的测试数据上评估模型的泛化能力。 在"RM2023_Radar_Dataset-main"中,我们可能会找到图像文件夹、标注文件(如CSV或XML格式)、可能的预处理脚本以及训练配置文件等。这些文件共同构成了一个完整的训练环境,帮助开发者构建和优化适用于雷达站的YOLO模型。 总结来说,"RM2023雷达站所用到的yolo神经网络训练数据集"是一个专为雷达站目标检测设计的数据集,包括车辆和装甲板两类目标。通过理解和利用这个数据集,开发者可以训练出能够在实际环境中高效运行的YOLO模型,提升雷达站的监测和识别能力。在训练过程中,关键步骤包括数据预处理、模型编译、训练、验证和测试,每个环节都需要仔细考虑和优化,以确保模型的性能和实用性。
2024-10-29 23:37:08 1.18MB 神经网络 数据集
1
ultralytics yolo 训练及推理自定义人脸关键点数据 - python 实现 ultralytics yolo 训练自定义人脸关键点训练和验证数据集 数据集格式:yolo 训练集数量:3295 验证集数量:120 类别:人脸,1类 类别号:0 关键点:5个,包括左眼,右眼,鼻尖,左嘴唇边界点,右嘴唇边界点。
2024-10-22 15:12:20 327.2MB 数据集 yolo 人脸关键点检测 目标检测
1
根据XFOIL计算得到的CLARK-Y翼型性能数据,训练得到一个还不错的神经网络模型,可以用于翼型性能预测 根据XFOIL计算得到的CLARK-Y翼型性能数据,训练得到一个还不错的神经网络模型,可以用于翼型性能预测 根据XFOIL计算得到的CLARK-Y翼型性能数据,训练得到一个还不错的神经网络模型,可以用于翼型性能预测根据XFOIL计算得到的CLARK-Y翼型性能数据,训练得到一个还不错的神经网络模型,可以用于翼型性能预测
2024-10-04 16:44:33 1.14MB 神经网络
1
银行卡卡号识别是计算机视觉领域中的一个重要应用,主要用于自动读取和处理银行卡上的数字序列,以便于线上支付、账户管理等场景。这个数据集的标题是"银行卡卡号切图数据集,用于卡号识别训练",说明它包含了用于训练模型以识别银行卡号图像的图片资源。 描述中提到,该数据集包含3200多张真实的银行卡号切图,这意味着这些图片是实际拍摄的银行卡部分区域,展示了各种实际环境下的卡号显示情况,如不同的光照、角度、背景和卡号设计等。此外,还有上万张合成数据,这通常是为了增加数据多样性,通过合成技术(如数字合成或图像变换)模拟更多可能的场景,帮助训练模型应对更广泛的输入条件。这种混合真实与合成的数据集有助于提高模型的泛化能力,防止过拟合。 数据集的获取链接(https://blog.csdn.net/YY007H/article/details/120650155)表明,这些资源可能在CSDN(中国软件开发网络)的一个博客文章中被详细介绍,可能包括数据集的来源、格式、使用方法等信息,对研究人员和开发者来说非常有价值。 标签"数据集"进一步明确了这是一个用于机器学习或深度学习的训练素材,尤其是针对图像识别任务。在训练过程中,数据集会被划分为训练集、验证集和测试集,分别用于模型的学习、参数调整和性能评估。 压缩包子文件的文件名称列表——bank1、bank2、bank3,可能代表了数据集的不同部分或类别,比如不同银行的卡号图像、不同阶段的训练数据等。为了训练一个有效的卡号识别模型,可能需要对这些子集进行合理的组织和处理,例如按比例分配到各个集合中,或者根据图像的难度和质量进行分组。 在实际应用中,卡号识别通常涉及以下技术点: 1. 图像预处理:包括灰度化、二值化、噪声去除、直方图均衡化等,以提升图像质量。 2. 特征提取:可以使用传统的特征提取方法如SIFT、SURF,或者利用深度学习中的卷积神经网络(CNN)自动提取特征。 3. 文本检测:通过如YOLO、 EAST等模型定位卡号区域,确保后续处理聚焦在数字序列上。 4. 卡号识别:应用OCR(光学字符识别)技术,如基于RNN(循环神经网络)或Transformer的序列标注模型,识别出每个数字。 5. 模型评估:通过准确率、召回率、F1分数等指标评估模型性能,并根据测试结果进行模型优化。 这个数据集提供了训练银行卡号识别模型的基础,可以帮助开发者或研究者构建出能够适应复杂环境的自动卡号识别系统,从而提升金融服务的效率和安全性。
2024-09-19 20:23:16 119.24MB 数据集
1
表格识别ocr模型,基于paddleocr训练,可以识别中英文表格数据
2024-09-10 15:31:14 7.43MB ocr 表格识别
1
内容概要: 空间推理验证码数据集+完整标注 适用场景: 适用于训练空间推理验证码的目标检测模型, 我自己也基于此数据集及标注数据训练出了识别率98%以上的安某客空间推理验证码的识别模型 更多建议: 如果你是刚接触yolo目标检测模型,建议先移步我的博客主页,博客内有手把手训练的教学。
2024-09-10 14:37:23 12.15MB 目标检测 数据集
1