传统的小波神经网络以梯度下降法训练网络,而梯度下降法易导致网络出现收敛早熟、陷入局部极小等问题,影响网络训练的精度。文章将萤火虫算法用于训练小波神经网络,在全局内搜寻网络的最优参数。为了提高萤火虫算法参数寻优的能力,在训练过程中自适应调节γ值。同时利用高斯变异来提高萤火虫个体的活性,在保证收敛速度的同时避免算法陷入局部极小。将优化后的小波神经网络用于短期负荷预测,实验证明改进后的预测模型非线性拟合能力较强、预测精度较高。
2024-09-15 20:58:26 172KB 小波神经网络
1
1. 数据预处理 2 2. 模型搭建 4 3. 训练与验证 5 4. 结果分析 8 5. 总结 10 1. 数据预处理 2. 模型搭建 3. 训练与验证 4.
2023-07-19 20:32:03 962KB
1
希腊电力负荷预测IPTO 此存储库包含我研究生论文的代码,该论文涉及短期负荷预测,使用希腊独立电力公司提供的每日负荷数据集,在R,RStudio,R-markdown和R-Shiny中开发了预测希腊每小时的电力负荷需求传输运营商(IPTO)-(希腊的AΔΜHΕ) 可以在亚里斯多德大学的论文库中找到我的论文的文档: : ln= ,请原谅我文档中的错误,如果发现任何错误,请通知我 :) 库-依赖关系 数据预处理库 xlsx软件包:install.packages('xlsx') JSONLite :install.packages(“ jsonlite”) lubridate :install.packages('lubridate') 标题:install.packages(“标题”) 功能选择,库:install.package(“ Boruta”) 机器学习图书馆 SV
2023-07-14 12:21:55 14.47MB machine-learning r r-markdown r-shiny
1
通过研究电力负荷预测中支持向量机的参数优化问题,将改进后新的粒子群算法导入支持向量机参数中,从而建立一种新的电力负荷预测模型(IPSO-SVM)。首先将支持向量机参数编码为粒子初始位置向量,然后通过对粒子个体之间信息交流、协作的分析找到支持向量机的最优参数,并针对标准粒子群算法的缺陷进行一定的改进,从而应用于电力负荷的建模与预测,最后通过仿真对比实验来测试它的性能。实验结果表明,这种新的电力负荷预测模型能够获得较高精度的电力负荷预测结果,大大减少了训练时间,能够满足电力负荷在线预测要求。
1
文献为“基于 VMD 与 PSO 优化深度信念网络的 短期负荷预测”的caj文件,为提高短期负荷预测精度,采用变分模态分解(variational mode decomposition,VMD)技术将原始历史负荷序列分解为一系列特征互异的模态函数,对每个模态函数进行特征分析并分别建立负荷预测模型。
2022-12-29 16:18:38 1.33MB VMD 负荷预测 电网技术 EI
1
为凸显负荷波动的随机性、周期性和相关趋势,通过探求负荷变化机理显著提升预测精度,提出了一种基于EMD的负荷波动机理研究方法。首先对负荷进行EMD分解,得到随机、周期和趋势分量;然后分析各分量的变化规律与候选影响因素的关联关系,推导负荷变化机理,提取时标特征值;最后进行特征的去冗余。该方法创新点是能提取出特征值的时标特性。以广东省负荷数据集作为预测案例研究,对比实验研究结果表明了所提方法的有效性。
1
电力系统短期负荷预测:输入每小时ENTSO-E负载,输入ENTSO-E每小时负荷、天气和风度 Models NRMSE MAE MAPE HMM 0.255 1058.75 0.148 ARIMA 0.198 807.97 0.108 DWT-ARIMA 0.0805 565.91 0.0876
1
WOA+BILSTM+注意力机制电力系统短期负荷预测 python tensorflow2.x运行环境 numpy pandas sklearn 包含负荷数据 bp神经网络 lstm bilstm WOA+bilstm+lstm+bp优化的预测结果图 以及各预测结果与真实值的对比图
2022-07-04 19:09:58 940KB 机器学习 python tensorflow
【SVM预测】基于SVM实现电力系统短期负荷预测含Matlab源码.zip
2022-05-22 15:52:06 506KB matlab
1
该程序以matlab为基础通过对历史气候数据进行模糊聚类,提取相似日负荷构成样本数据并进行小波分解,利用改进的PSO-RVM算法对各小波分量进行预测和叠加,以得到预测日负荷序列的均值和概率模型。