WOA+BILSTM+注意力机制电力系统短期负荷预测

上传者: 56423113 | 上传时间: 2022-07-04 19:09:58 | 文件大小: 940KB | 文件类型: 7Z
WOA+BILSTM+注意力机制电力系统短期负荷预测 python tensorflow2.x运行环境 numpy pandas sklearn 包含负荷数据 bp神经网络 lstm bilstm WOA+bilstm+lstm+bp优化的预测结果图 以及各预测结果与真实值的对比图

文件下载

资源详情

[{"title":"( 41 个子文件 940KB ) WOA+BILSTM+注意力机制电力系统短期负荷预测","children":[{"title":"WOA+BLSTM+注意力机制的短期电力负荷预测tf2.keras","children":[{"title":"main2_LSTM.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"main5_WOA_BiLSTM_Attention.py <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"woa_bilstm_attention_model.h5 <span style='color:#111;'> 349.38KB </span>","children":null,"spread":false},{"title":"bilstm_model.h5 <span style='color:#111;'> 223.37KB </span>","children":null,"spread":false},{"title":"lstm_model.h5 <span style='color:#111;'> 127.45KB </span>","children":null,"spread":false},{"title":"bilstm_attention_model.h5 <span style='color:#111;'> 236.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"VMD.cpython-38.pyc <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"EMD.cpython-38.pyc <span style='color:#111;'> 10.74KB </span>","children":null,"spread":false},{"title":"Optim.cpython-38.pyc <span style='color:#111;'> 4.20KB </span>","children":null,"spread":false},{"title":"model.cpython-38.pyc <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"emd_functions.cpython-38.pyc <span style='color:#111;'> 10.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"Optim.py <span style='color:#111;'> 5.46KB </span>","children":null,"spread":false},{"title":"result","children":[{"title":"bp_result.npz <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"bilstm_attention_result.npz <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"woa_result.npz <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"woa_bilstm_attention_result.npz <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"bilstm_result.npz <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"lstm_result.npz <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false}],"spread":true},{"title":"main6_compare.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"电荷数据.csv <span style='color:#111;'> 425.08KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 5.95KB </span>","children":null,"spread":false},{"title":"main3_BiLSTM.py <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"main1_BP.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"main4_BiLSTM_Attention.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"figure","children":[{"title":"结果对比.jpg <span style='color:#111;'> 19.84KB </span>","children":null,"spread":false},{"title":"woa_bilstm_attention_loss_curve.jpg <span style='color:#111;'> 11.16KB </span>","children":null,"spread":false},{"title":"bilstm_loss_curve.jpg <span style='color:#111;'> 11.33KB </span>","children":null,"spread":false},{"title":"BiLSTM_attention预测结果.jpg <span style='color:#111;'> 14.94KB </span>","children":null,"spread":false},{"title":"第一层BiLSTM节点数优化.png <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false},{"title":"BP预测结果.jpg <span style='color:#111;'> 17.42KB </span>","children":null,"spread":false},{"title":"lstm_model_loss_curve.jpg <span style='color:#111;'> 11.33KB </span>","children":null,"spread":false},{"title":"WOA_BiLSTM_attention预测结果.jpg <span style='color:#111;'> 14.27KB </span>","children":null,"spread":false},{"title":"bilstm_attention_loss_curve.jpg <span style='color:#111;'> 12.06KB </span>","children":null,"spread":false},{"title":"全连接层节点数优化.png <span style='color:#111;'> 11.26KB </span>","children":null,"spread":false},{"title":"Batchsize优化.png <span style='color:#111;'> 8.75KB </span>","children":null,"spread":false},{"title":"训练次数优化.png <span style='color:#111;'> 11.40KB </span>","children":null,"spread":false},{"title":"LSTM预测结果.jpg <span style='color:#111;'> 15.28KB </span>","children":null,"spread":false},{"title":"woa fitness curve.png <span style='color:#111;'> 9.64KB </span>","children":null,"spread":false},{"title":"第二层BiLSTM节点数优化.png <span style='color:#111;'> 12.72KB </span>","children":null,"spread":false},{"title":"BiLSTM预测结果.jpg <span style='color:#111;'> 15.14KB </span>","children":null,"spread":false},{"title":"学习率优化.png <span style='color:#111;'> 9.78KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明