这是一个通过python实现的示例,实现短期气候预测功能。压缩包无解压密码,放心使用。
2025-04-24 20:37:14 13.84MB python python示例
1
1、能够自动地采集和识别学生的人脸信息,实现学生的身份验证和考勤记录,无需学生进行任何操作,也无需教师进行任何干预,提高了考勤的速度和准确性。 2、能够实时地将考勤数据上传到服务端,实现考勤数据的安全和可信,无需考虑数据的丢失或损坏,也无需担心数据的篡改或泄露,保障了考勤的公正和透明。 3、能够提供丰富的考勤数据的分析和展示,如考勤率、考勤分布、考勤趋势、考勤异常等,可以帮助教师和学生了解和改进自己的出勤情况,提升了考勤的意义和价值。 本课题的研究内容主要包括以下几个方面: 考勤签到系统的建立与完善:该模块有客户端与服务端,客户端包括发送模块,功能模块和接收模块;服务端包括签到模块、发送模块,接收模块与数据库模块。 人脸识别模块的设计和实现:该模块负责采集和识别学生的人脸信息,实现学生的身份验证和考勤记录。该模块采用了特征提取方法,可以有效地提取和学习人脸的特征,处理人脸的变化和差异,提高人脸识别的准确率和鲁棒性。并生成yml模型,通过调用yml特征库进行快速识别。 用户画像的构建:首先统计学生签到签退次数和时间,对签到签退分别是上下午进行分析,并统计学生课堂学习的总时间。并对签到时间
2025-04-14 17:53:49 20.02MB 网络 网络 lstm 数据集
1
时序预测|基于长短期记忆网络时间序列LSTM预测Matlab程序 单变量 1.程序功能已完成调试,用户可以通过一键操作生成图形和评价指标。 2.数据输入以Excel格式保存,只需更换文件,即可运行以获得个人化的实验结果。 3.代码中包含详细注释,具有较强的可读性,特别适合初学者和新手。 4.在实际数据集上的效果可能较差,需要对模型参数进行微调。 CSDN:机器不会学习CL 时序预测|基于长短期记忆网络时间序列LSTM预测Matlab程序 单变量 1.程序功能已完成调试,用户可以通过一键操作生成图形和评价指标。 2.数据输入以Excel格式保存,只需更换文件,即可运行以获得个人化的实验结果。 3.代码中包含详细注释,具有较强的可读性,特别适合初学者和新手。 4.在实际数据集上的效果可能较差,需要对模型参数进行微调。 CSDN:机器不会学习CL
2025-04-12 16:27:55 102KB 网络 网络 lstm matlab
1
内容概要:文章介绍了基于Matlab的PSO-LSTM(粒子群算法优化长短期记忆神经网络)实现多输入分类预测的完整流程。针对大数据时代背景下金融、医疗、能源等行业面临的多变量时序数据分析挑战,传统机器学习方法难以有效捕捉数据间的时序依赖性和长期依赖关系。LSTM虽能很好应对长期依赖性问题,却因自身超参数优化难题限制性能发挥。为此,文中提出了融合PSO与LSTM的新思路。通过粒子群优化算法自动化选取LSTM的最优超参数配置,在提高预测精度的同时,加速模型训练过程。项目详细展示了该方法在金融预测、气象预报等多个领域的应用前景,并用具体代码实例演示了如何设计PSO-LSTM模型,其中包括输入层接收多输入特征、经由PSO优化超参数设定再进入LSTM层完成最终预测输出。 适用人群:从事机器学习、深度学习研究的专业人士或研究生,尤其是专注于时间序列数据挖掘以及希望了解如何利用进化算法(如PSO)优化神经网络模型的研究人员。 使用场景及目标:①对于具有多维度时序特性的数据集,本模型可用于精准分类预测任务;②旨在为不同行业的分析师提供一种高效的工具去解决实际问题中复杂的时变关系分析;③通过案例代码的学习使开发者掌握创建自己的PSO-LSTM模型的技术,从而实现在各自专业领域的高准确性预测。 其他说明:需要注意的是,在具体实施PSO-LSTM算法过程中可能会遇到诸如粒子群算法的收敛问题、LSTM训练中的梯度管理以及数据集质量问题等挑战,文中提及可通过改进优化策略和加强前期准备工作予以解决。此外,由于计算成本较高,还需考虑硬件设施是否足够支撑复杂运算需求。
2025-04-09 19:51:50 35KB 粒子群优化 Long Short-Term Memory
1
内容概要:本文介绍了如何在MATLAB中实现基于POA(Pelican Optimization Algorithm)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM),用于多输入单输出的时间序列回归预测。该模型通过CNN提取局部特征,BiLSTM处理上下文信息,POA优化超参数,提高了模型的预测性能。文章详细讲解了数据预处理、模型构建、训练和评估的全过程,并提供了完整的代码示例和图形用户界面设计。 适合人群:具备MATLAB编程基础的数据科学家、研究人员和技术爱好者。 使用场景及目标:适用于需要高精度时间序列预测的应用,如金融市场预测、气象数据预测、工业过程监控等。用户可以通过该模型快速搭建并训练高质量的预测模型。 其他说明:未来的研究可以考虑引入更多先进的优化算法,拓展模型的输入输出结构,增强图形用户界面的功能。使用过程中需要注意数据的正常化和防止过拟合的问题。
2025-04-08 09:42:36 45KB 时间序列预测 Matlab 机器学习
1
"基于CNN-BILSTM-Attention及SAM-Attention机制的深度学习模型:多特征分类预测与效果可视化",CNN-BILSTM-Attention基于卷积神经网络-双向长短期记忆神经网络-空间注意力机制CNN-BILSTM-SAM-Attention多特征分类预测。 多特征输入单输出的二分类及多分类模型。 程序内注释详细替数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。 多边形面积PAM,分类准确率,灵敏度,特异性,曲线下面积AUC,Kappa系数,F_measure。 ,核心关键词: CNN-BILSTM-Attention; 空间注意力机制; 多特征分类预测; MATLAB程序; 分类效果图; 迭代优化图; 混淆矩阵图; 多边形面积; 分类准确率; 灵敏度; 特异性; AUC; Kappa系数; F_measure。,基于多特征输入的CNN-BILSTM-Attention模型及其分类预测效果图优化分析
2025-03-15 17:48:02 327KB gulp
1
基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出 基于长短期记忆循环网络的数据分类预测Matlab程序LSTM 多特征输入多类别输出
2025-03-06 16:32:41 73KB 网络 matlab lstm
1
主要内容:本文详细介绍了在MATLAB环境中通过鲸鱼优化算法(WOA)来优化卷积长短期记忆网络(CNN-LSTM)以实现高效的数据分类与预测的方法。项目不仅提供了理论概述和设计思路,还包含了完整代码及合成数据样本。涵盖了从基础知识到模型优化的设计流程。 适合人群:对于深度学习及机器学习感兴趣的研究员和工程师。 使用场景及目标:适用于各种类型数据的分类及预处理,在需要进行复杂数据集处理的情况下能提供更好的预测效果。 其他说明:文中给出了详细的设计指导和具体的执行脚本,方便读者理解和实践。同时,项目允许在特定应用场景下定制和调参,增强了方法的实用性。
2024-11-18 17:13:49 37KB 鲸鱼算法 MATLAB环境
1
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。 这段程序主要是一个基于CNN-LSTM-Attention神经网络的预测模型。下面我将逐步解释程序的功能和运行过程。 1. 导入所需的库: - matplotlib.pyplot:用于绘图 - pandas.DataFrame和pandas.concat:用于数据处理 - sklearn.preprocessing.MinMaxScaler:用于数据归一化 - sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能 - keras:用于构建神经网络模型 - numpy:用于数值计算 - math.sqrt:用于计算平方根 - attention:自定义的注意力机制模块 2. 定义一个函数mae_value(y_true, y_pred)用于计
2024-10-31 10:13:17 288KB 网络 网络 lstm
1
基于卷积神经网络-双向长短期记忆网络(CNN-BILSTM)多维时间序列预测,CNN-BILSTM回归预测,MATLAB代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-10-14 09:49:18 62KB 网络 网络 matlab
1