长短期记忆网络(Long Short-Term Memory, LSTM)是一种递归神经网络(Recurrent Neural Network, RNN)的变体,专门用于处理和预测序列数据。它通过引入门控机制和记忆细胞,能够更好地捕捉序列中的长期依赖关系,并解决传统RNN中的梯度消失或爆炸问题。
2024-04-09 16:35:28 2KB pytorch pytorch lstm NLP
1
首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,而目前依然是基于经验的办法解决。对此,本文采用粒子群优化算法对模型参数进行寻优,以测试集误差作为判决依据,实现模型参数的优化选择,使得预测精度有所提高。实际算例表明,本文的预测方法收敛性好、有较高的预测精度和较快的训练速度。
2022-04-13 09:13:46 329KB 支持向量机 算法 学习 回归
基于LSTM的短期风力发电预测
2022-03-21 19:28:54 1KB
1
优秀论文及配套源码。首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,而目前依然是基于经验的办法解决。对此,本文采用粒子群优化算法对模型参数进行寻优,以测试集误差作为判决依据,实现模型参数的优化选择,使得预测精度有所提高。实际算例表明,本文的预测方法收敛性好、有较高的预测精度和较快的训练速度。 文件列表: 数据\a23.xls 数据\a45.xls 数据\B2.xls 数据\b3.xls 数据\B4.xls 数据\B5.xls 数据\bdata1.xls AdaptFunc.m AdaptFunc1.m BaseStepPso.m gaijin.m InitSwarm.m pso.m shorttime.m 基于支持向量机的短期电力负荷预测.doc
2022-03-03 19:11:40 327KB svm 电力负荷预测
1
Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture that remembers values over arbitrary intervals. Stored values are not modified as learning proceeds. RNNs allow forward and backward connections between neurons. An LSTM is well-suited to classify, process and predict time series given time lags of unknown size and duration between important events. Relative insensitivity to gap length gives an advantage to LSTM over alternative RNNs, hidden Markov models and other sequence learning methods in numerous applications.
2022-02-23 10:12:34 443KB LSTM
1
日内交易系统,短期价格模式和突破系统,供大家参考
2021-12-08 21:13:30 20.22MB day trading
1
Long Short-Term Memory Networks With Python.zip 使用 Python 的长短期记忆网络 课程代码 Code
2021-10-23 09:03:46 281KB Python 课程代码 LSTM Network
LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。 LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。本文档是基于LSTM原理的简单实现,有助于理解其原理。
2021-10-06 16:27:31 2KB Deep Learnin LSTM
1
Long Short-Term Memory Networks With Python Develop Sequence Prediction Models With Deep Learning Jason Brownlee
2021-09-11 21:54:40 3.48MB 深度学习 机器学习
1
[1]Hochreiter, Sepp; Schmidhuber, Jürgen.Long Short-Term Memory[J].Neural Computation,1997,9(8)
2021-08-08 11:05:51 237KB LSTM 长短期记忆神经网络
1