本书对矩阵论课程的基本概念、主要结论和常用方法做了简明扼要的分类总结, 对各章节的课后习题做了详细的解答。根据课程要求精选了适量的自测题, 并附有答案或提示。书后附录部分收编了12 套近年来研究生矩阵论课程的考试试题和3套博士生入学考试试题, 并做了详细的解答。 包含了北京邮电大学孙松林老师的课件及电子书和课后习题解析。
2024-08-02 15:31:29 4.32MB 矩阵理论 矩阵分解 线性空间
1
导语:本系列文章一共有三篇,分别是 《科普篇 | 推荐系统之矩阵分解模型》 《原理篇 | 推荐系统之矩阵分解模型》 《实践篇 | 推荐系统之矩阵分解模型》 第一篇用一个具体的例子介绍了MF是如何做推荐的。第二篇讲的是MF的数学原理,包括MF模型的目标函数和求解公式的推导等。第三篇回归现实,讲述MF算法在图文推荐中的应用实践。三篇文章由浅入深,各有侧重,希望可以帮助到大家。下文是第一篇——《科普篇 | 推荐系统之矩阵分解模型》,第二篇和第三篇将于后续发布,敬请期待。 矩阵分解(Matrix Factorization, MF)是推荐系统领域里的一种经典且应用广泛的算法。在基于用户行为的推荐算法
2024-05-13 23:18:17 416KB 推荐算法 推荐系统
1
It supports the following matrix operations and properties: Multiplication, Addition, Subtraction, Determinant, Norm1, Norm2, Frobenius Norm, Infinity Norm, Rank, Condition, Trace, Cholesky, LU and QR decomposition Single Value Decomposition, Least Squares solver, Equation System solver and Eigenproblem solver.
2023-10-22 17:27:55 28KB matrix 矩阵 分解 LU
1
描述 在MIT视频监控数据集上使用NNMF进行异常检测 接触 Vu Nguyen博士, 引文 Bayesian Nonparametric Approaches to Abnormality Detection in Video Surveillance. Nguyen, V., Phung, D., Pham, D. S., & Venkatesh, S In Annals of Data Science, pp 1-21, 2015. Interactive Browsing System for Anomaly Video Surveillance. T.V. Nguyen, D. Phung, S. K. Gupta, and S Venkatesh In IEEE Eighth International Conference on Intelligent Sensors,
2023-04-30 20:57:03 3.48MB 系统开源
1
提出了利用小波变换(WT)、非负稀疏矩阵分解(NMFs)和Fisher线性判别(FLD)来进行人脸识别。用小波变换分解人脸图像,选择最低分辨率的子段,既能捕获到人脸的实质特征,又有效地降低了计算复杂性;非负稀疏矩阵分解能显示地控制分解稀疏度和发现人脸图像的局部化表征;Fisher线性判别能在低维子空间中形成良好的分类。实验结果表明,这种方法对光照变化、人脸表情和部分遮挡不敏感,具有良好的健壮性和较高的识别效率。
1
多种经典矩阵分解算法包,含但不局限于PMF,biasSVD
2023-03-30 21:44:17 22.28MB 矩阵分解 PMF算法 推荐算法
1
1.摘要本次阅读的论文为 Deep Autoencoder-like Nonnegative Matrix Factorization forCommunity
2023-02-14 02:30:22 2.71MB
1
蔡氏电路matlab仿真代码对抗性个性化推荐排名 APR通过执行对抗训练来增强成对排名方法BPR。 为了说明其工作原理,此处通过在用户和项的嵌入向量上添加对抗性扰动来实现MF上的APR。 这是我们对该文件的正式实现: 何湘南,何占魁,杜小雨和蔡达生。 2018.推荐的对抗性个性化排名,在SIGIR'18的会议记录中。 (通讯作者:) 如果您使用这些代码,请引用我们的论文。 谢谢! 环境 Python 2.7 TensorFlow> = r1.0 脾气暴躁> = 1.12 PS。 供您参考,我们的服务器环境为2.20 GHz和64 GiB内存的Intel Xeon CPU E5-2630。 我们建议您的可用内存大于16 GiB,以重现我们的实验。 快速开始 演示:APR的效果 该命令通过在第40个数据集yelp (--adv_epoch)中为预训练的MF模型(--restore)添加对抗性扰动来显示APR的效果。 加载预训练模型后,前40个时期为正常MF-BPR,然后进行对抗训练APR。 python AMF.py --dataset yelp --adv_epoch 40 --epoc
2023-01-29 10:20:36 45.11MB 系统开源
1
结合二维离散小波变换(2DDWT)和二维非负矩阵分解(2DNMF)两者的优点, 提出了一种新的人脸识别融合算法2DDWT 2DNMF。首先利用小波变换把人脸图像分解成四个子块频带区域, 并对三个高频子块进行图像融合, 然后对低频子块和融合图像进行二维非负矩阵分解以提取特征, 进而对特征数据进行加权处理。ORL和YALE人脸数据库中的识别实验表明, 与PCA、SVD、NMF以及2DDWT NMF算法相比, 新融合算法能有效缩短训练时间和提高识别率。
1
Dmf_AttnDMF 深度矩阵分解模型 与 带注意力的深度矩阵分解模型
2023-01-05 16:49:03 326KB Python
1