大语言模型(Large Language Models, LLM)作为人工智能领域的前沿技术,近年来得到了迅速的发展和广泛的关注。本书《大规模语言模型从理论到实践》由张奇、桂韬、郑锐、黄萱菁联合著作,旨在向读者全面介绍大语言模型的研究背景、发展历程、理论基础以及实践应用。
本书前言部分回顾了自然语言处理(Natural Language Processing, NLP)的历史,从1947年第一台通用计算机ENIAC的问世,到20世纪50年代末到60年代初的初创期,再到21世纪初的经验主义时代,以及深度学习时代的到来。在2017年Transformer模型提出后,自然语言处理经历了爆发式的增长。特别是2018年,动态词向量ELMo模型的出现,以及以GPT和BERT为代表的预训练语言模型的提出,标志着自然语言处理进入了一个新的预训练微调时代。2019年至2022年间,GPT-2、T5、GPT-3等具有庞大参数量的大语言模型相继发布,极大地推动了语言模型的发展。直至2022年11月ChatGPT的问世,预示着大语言模型研究进入了一个全新的高度。
书中详细介绍了大语言模型的三个主要发展阶段:基础模型阶段、能力探索阶段和突破发展阶段。在基础模型阶段,众多重要的语言模型如BERT、GPT、百度ERNIE等被提出并广泛应用,为后续发展奠定了基础。能力探索阶段,则是研究者们探索如何在不进行单一任务微调的情况下发挥大语言模型的能力,同时开始尝试指令微调方案,将不同任务统一为生成式自然语言理解框架。随着2022年11月ChatGPT的发布,大语言模型的研究热潮被推向新高。
书中还提到了大语言模型在实践应用中的种种挑战,包括训练过程的复杂性、参数量的庞大以及对分布式并行计算的依赖等。这些挑战要求研究人员不仅要有扎实的自然语言处理基础理论和机器学习基础,同时还需要掌握分布式系统和并行计算的相关知识。
本书的作者们结合自己在自然语言处理和分布式系统教学方面的经验,历时8个月完成,目的是帮助读者快速了解大语言模型的研究和应用,并解决相关的技术挑战。全书不仅仅为自然语言处理研究人员提供了宝贵的参考资料,也适合对大语言模型感兴趣的读者阅读。
大语言模型的发展对于人工智能领域具有重大意义,它不仅提升了机器翻译、文本生成、对话系统等NLP任务的性能,还为未来人工智能的发展开辟了新的可能性。通过本书的学习,读者能够对大语言模型有一个全面而深入的理解,进而能够在实际研究和应用中取得突破。本书对于那些希望掌握大语言模型技术和深入研究其潜能的读者来说,是一份不可多得的宝贵资料。
2025-12-03 11:37:28
26.46MB
语言模型
1