标题:“CANopen-STM32F103-PDO-SDO-工业数据采集例程”所涉及的知识点涵盖了嵌入式系统开发中的工业通信协议应用。CANopen是一种基于CAN(Controller Area Network)总线的高层通信协议,它广泛应用于自动化和控制网络系统中。STM32F103则是STMicroelectronics(意法半导体)推出的一款高性能的Cortex-M3内核微控制器(MCU),该芯片因其性能稳定和成本效益而在工业应用领域非常受欢迎。 在本例程中,特别关注了CANopen协议中的PDO(过程数据对象)和SDO(服务数据对象)的应用。PDO主要负责实时数据的传输,通常用于周期性或事件触发的数据交换,是实现设备间数据共享与同步的核心机制。SDO则用于处理对设备对象字典的访问,通常用于初始化配置、参数设定等非周期性的数据交换。 本例程的文件列表中包含了“简介.txt”文件,这可能是对整个例程功能、使用方法和注意事项的概述,是理解整个项目结构和目的的重要文档。而“CANopen_STM32F103_PDO_SDO_工业数据”可能包含了实际的代码实现、配置方法和数据采集的相关细节。文件“CANopen-STM32F103-master”可能是一个包含了完整工程代码的源代码库,开发者可以通过它来进一步了解和深入开发。 在实际的应用开发中,开发者需要了解如何在STM32F103上配置CAN模块,如何通过编程实现PDO和SDO的通信机制,以及如何处理数据采集、存储和传输。该例程的实现和应用能够帮助开发者更好地理解CANopen协议在工业通信中的具体应用,以及如何在嵌入式设备上高效实现工业数据的采集、处理和交换。 此外,该例程还可能涉及到了对STM32F103的HAL库(硬件抽象层库)或LL库(低层库)的使用,这对于快速开发和调试嵌入式应用程序非常重要。开发者需要熟悉这些库函数,以便能够高效地操作MCU的硬件资源,实现具体功能。 通过实践CANopen-STM32F103-PDO-SDO-工业数据采集例程,开发者可以掌握在实际工业环境中部署可靠通信协议的关键技术,为后续的工业自动化项目开发打下坚实的基础。
2026-01-22 11:34:21 28.76MB STM32
1
矿山物联网技术是将传感技术、通信技术、自动化设备和智能化计算技术相结合,应用于矿山管理,使得煤炭企业在生产中实现自动控制、全面感知和智能管理。文章分析了矿山物联网在煤矿企业的应用情况,包括全面感知系统、自动控制和智能管理三个主要方面。 全面感知系统通过对矿山环境的实时监控、灾害预警和应急救援等环节的实时控制,有效提升矿山的安全管理质量。系统利用多种技术手段,如生命探测、实时定位、智能传感和视频监控等,保障生产过程中的安全性,并减少生产风险。 自动控制方面,主要通过控制层技术实现对矿山生产设备和感知层终端的智能控制。控制内容包括通信信号、设备运行、数据传输存储和纠错分析等。关键技术有通信协议、接口技术、自组网技术、智能计算、IP传输和大规模数据处理等。子系统平台包括环网、智能计算、通信节点、接口兼容系统和多源异构数据存储等,以提升矿山生产的自动化水平和工作人员的安全性。 智能管理系统通过云计算、面向对象程序、控制和显示设备实现矿山综合情况的分析和管理。管理内容包括设备控制、人员管理、诊断维修、生产运输、安全管理、灾害预警、重大危险源监控、决策管理、应急救援管理和信息管理等。系统能够实现对矿山环境的综合管理,便于管理者实时掌握矿山的综合情况,提升煤炭企业生产中的安全性。 矿山物联网技术的发展,不仅可以推社会生产力的发展,还对企业管理及生产具有积极意义。对于煤炭企业而言,物联网技术的融合能带来深刻影响,是产业升级转型发展的必然产物。物联网技术的积极作用在于将煤炭生产中的运输、销售、物资、供应和统计等分支环节组成一个整体,实现统一化管理,进一步提升矿山企业的信息分析精准化、网络化、规范化和可视化,为煤炭企业发展提供良好的信息决策方案。
2026-01-22 11:32:10 29KB
1
矿山智能掘进系统是一种基于人工智能技术的矿山采掘工具,它利用高精度传感器、计算机图像处理技术以及机器学习算法等,能够实现矿山掘进过程的自动化、智能化和高效化。 该系统的设计旨在提高矿山采掘效率,降低生产成本,减少人为操作误差等。通过对采矿机器人进行实时监测和智能控制,系统能够自动完成矿山掘进、爆破等作业,并能够对采矿机器人进行远程监控和数据分析。 该系统的应用具有广泛的市场前景,可应用于各种矿山采掘领域,如煤矿、金矿、铁矿等。同时,该系统的研发也对矿山采掘领域的技术提升和智能化发展起到了积极的推动作用。 总之,矿山智能掘进系统是一种具有广泛应用前景和市场价值的智能化矿山采掘工具,它的研发和应用将对矿山采掘领域的技术提升和智能化发展起到积极的推动作用。 随着工业4.0时代的到来,矿山采掘行业正经历着前所未有的技术革新。在此背景下,矿山智能掘进系统应运而生,成为推动矿业生产力飞跃的关键力量。本文将详细介绍矿山智能掘进系统的设计案例,以及它如何通过综合利用人工智能、物联网和工业互联网等先进技术,实现矿山掘进作业的自动化、智能化和高效化。 我们需要了解矿山智能掘进系统的核心技术构成。这一系统主要包括高精度的传感器、计算机图像处理技术和先进的机器学习算法。这些技术的融合使得矿山智能掘进系统能够实时监测采矿机器人的状态,自动完成掘进和爆破等作业,并对整个过程进行智能控制。通过这种方式,不仅大幅提升了掘进效率,而且显著降低了生产成本,并减少了因人为操作错误所造成的风险。 具体而言,智能掘进系统涵盖了多个子系统,例如智能综掘机、两臂锚杆钻车、可伸缩皮带机和智能集控中心等。智能综掘机通过安装倾角传感器、激光雷达和磁滞位移传感器等,实现精确的状态监测和自主定位,从而能够进行远程控制。锚杆钻车的自动化水平提升,使得支护作业更加高效。而可伸缩皮带机通过配备张力监测装置,显著提高了物料的运输效率。 此外,智能集控中心在掘进巷道出口位置,利用矿用隔爆本安型主机等设备,实现了多机协同控制和一键启停功能。并通过以太网数据传输接口,将井下信息实时上传至数据中心。传感器系统监测掘进机的位姿和工况,激光雷达负责巷道的精确定位,磁滞位移传感器监测液压油缸的位移,而压力和温度传感器则确保设备运行在安全参数之内。为了适应恶劣的工作环境,可视化系统采用了高清摄像头和红外补光技术,并配备防冲击防护措施,以保证视频监控的有效性。 智能化不仅体现在硬设备上,智能掘进系统在软件方面也有着卓越表现。系统采用的钻探和物探技术可提前探测地质条件,为安全高效的掘进提供了保障。电控系统负责数据的采集、处理和传输,支持遥控和远程控制操作,进一步提高了整个系统的自动化水平。 矿山智能掘进系统的应用市场前景广阔,可广泛应用于煤矿、金矿、铁矿等多种矿山采掘领域。其不仅提高了矿山采掘的生产力,降低了生产成本,而且改善了工人的工作环境,减少了安全事故的发生。随着技术的不断进步和市场的广泛接纳,矿山智能掘进系统将在未来的矿业生产中扮演越来越重要的角色。 通过本案例的分析,可以看出矿山智能掘进系统的设计不仅仅是一个技术突破,更是矿山采掘行业智能化转型的一个标志。未来,随着更多创新技术的融入,矿山智能掘进系统必将在提高生产效率和保障作业安全方面发挥更大的作用,从而推动整个矿业领域向着更加智慧、高效和安全的方向发展。
2026-01-22 11:29:41 31KB 智慧矿山 工业互联网
1
两电平三相并网逆变器模型预测控制MPC:单矢量、双矢量与三矢量控制及功率器件损耗模型Matlab Simulink仿真实现,两电平三相并网逆变器模型预测控制MPC 包括单矢量、双矢量、三矢量+功率器件损耗模型 Matlab simulink仿真(2018a及以上版本) ,关键词:两电平三相并网逆变器;模型预测控制(MPC);单矢量控制;双矢量控制;三矢量控制;功率器件损耗模型;Matlab;Simulink仿真;2018a及以上版本。,"基于MPC的两电平三相并网逆变器模型研究:单双三矢量与功率损耗仿真"
2026-01-22 11:27:01 71KB
1
​ HAL_UART_Receive接收最容易丢数据了,可以考虑用中断来实现,但是HAL_UART_Receive_IT还不能直接用,容易数据丢失,实际工作中不会这样用,STM32 HAL库USART串口中断编程:演示数据丢失,需要在此基础优化一下. 本文介绍STM32F103 HAL库USART串口中断,利用环形缓冲区来防止数据丢失. ​ 在STM32微控制器的使用中,HAL库提供了丰富的函数用于处理不同的硬件外设功能,其中之一是USART串口通信。在涉及到串口接收数据时,如果使用HAL_UART_Receive函数,往往会出现数据丢失的问题,尤其是在数据传输频率较高的情况下。因此,为了解决这一问题,开发者通常会采用中断模式来进行数据接收,即利用HAL_UART_Receive_IT函数。但即使在使用中断模式下,如果处理不当,数据依然可能会丢失,特别是当CPU正在执行其他任务而暂时无法响应中断时。为了进一步确保数据的完整性和实时性,引入环形缓冲区是解决数据丢失问题的有效方法。 环形缓冲区是一种先进先出(FIFO)的数据结构,它使用一段连续的内存空间,形成一个循环队列。这种数据结构的一个关键优势是它可以无冲突地处理数据的生产和消费。在串口通信场景中,数据的生产者是串口接收到的外部数据,而消费者则是程序中处理数据的代码。环形缓冲区允许中断服务例程(ISR)快速地将接收到的数据存储在缓冲区中,而主程序则可以不被中断地继续执行其他任务,之后再从缓冲区中顺序取出数据进行处理。这种方式大大降低了数据丢失的风险,提高了系统的整体性能和稳定性。 在STM32F103系列微控制器上使用HAL库进行环形缓冲区的设计,首先需要定义缓冲区的大小,并在内存中开辟相应的存储空间。接下来,编写相应的中断服务函数,以响应串口中断事件。在中断服务函数中,将接收到的数据存储到环形缓冲区中,并通过特定的指针变量来跟踪缓冲区中的读写位置,确保数据不会被覆盖。 然而,仅仅依赖硬件的中断机制还是不够的,因为中断本身可能因为优先级、嵌套或意外的程序延迟而不能及时响应。因此,需要对环形缓冲区的代码实现进行优化,例如,可以通过设置阈值标志来提示主程序及时读取数据,或者在主循环中检查缓冲区的状态,以确保即使在长时间无中断的情况下也不会发生数据溢出。在实际应用中,环形缓冲区的大小应根据数据接收的速率和处理能力合理选择,以保证既不会因为缓冲区太小导致频繁的读写操作,也不会因为缓冲区太大而过多地占用内存资源。 编写程序时,还需要注意同步问题,尤其是在中断服务程序和主循环之间对环形缓冲区进行读写操作时。为了避免竞态条件,可能需要使用信号量、互斥量或其他同步机制来保证数据的一致性和完整性。对于STM32F103这样的Cortex-M3核心,支持的HAL库已经提供了一系列的同步机制供开发者使用。 总体而言,利用STM32 HAL库实现USART串口中断编程时,通过环形缓冲区的设计可以有效防止数据丢失。这需要深入理解STM32的HAL库函数,合理设计中断优先级和处理流程,以及编写高效的数据处理算法。此外,还需要进行充分的测试以验证程序的稳定性和数据处理能力,确保在各种工作条件下都不会出现数据丢失的问题。
2026-01-22 11:23:48 12.34MB stm32 环形缓冲区
1
使用固定的摄像头,对准桌面,背景采用纯色,推荐白色。要求将螺丝和螺母放到摄像头视场内,对其进行识别与定位,在视频中圈出螺丝与螺母位置,并给出质心位置,并说明种类(螺丝或螺母)。推荐流程:降、二值化、形态学处理、包络及轮廓分析、特征分析、识别、质心求取。 (1)每一步图像处理有对应窗口输出 能够提取螺丝螺母的位置(2) 能够准确识别螺丝螺母并给出质心,方案合理(3) (4)友好的图形化界面
2026-01-22 11:20:03 67.65MB opencv
1
最新版本的 构建包 !
2026-01-22 11:13:46 3.63MB pdfjs
1
本项目旨在通过MATLAB实现基于BP神经网络的小型电力负荷预测模型,并对电力负荷数据进行预处理,采用反向传播算法进行训练,同时在训练过程中优化隐藏层节点数,选择合适的激活函数,并使用均方误差作为性能评估指标,最后通过可视化分析展示预测结果。该项目不仅适用于教学演示,还能够帮助研究人员和工程师深入理解电力负荷预测的算法过程和实际应用。 电力负荷预测作为电力系统规划和运行的重要环节,对于保证电力供应的可靠性和经济性具有关键作用。随着人工智能技术的发展,BP神经网络因其强大的非线性映射能力和自学习特性,在负荷预测领域得到了广泛应用。通过MATLAB这一强大的数学计算和仿真平台,可以更加便捷地实现BP神经网络模型的构建、训练和测试。 在本项目中,首先需要对收集到的电力负荷数据进行预处理。数据预处理的目的是提高数据质量,确保数据的准确性和一致性,这对于提高预测模型的性能至关重要。预处理步骤可能包括数据清洗、数据标准化、去除异常值等,以确保输入到神经网络的数据是有效的。 接下来,利用反向传播算法对BP神经网络进行训练。反向传播算法的核心思想是利用输出误差的反向传播来调整网络中的权重和偏置,从而最小化网络输出与实际值之间的误差。在训练过程中,需要仔细选择网络的结构,包括隐藏层的层数和每层的节点数。隐藏层节点数的选择直接影响到网络的学习能力和泛化能力,需要通过实验和交叉验证等方法进行优化。 激活函数的选择同样影响着神经网络的性能。常用的激活函数包括Sigmoid函数、双曲正切函数、ReLU函数等。不同的激活函数具有不同的特点和应用场景,需要根据实际问题和数据特性来选择最合适的激活函数,以保证网络能够学习到数据中的复杂模式。 性能评估是模型训练中不可或缺的一步,它能够帮助我们判断模型是否已经达到了预测任务的要求。均方误差(MSE)是一种常用的性能评估指标,通过计算模型预测值与实际值之间差值的平方的平均数来衡量模型的预测性能。MSE越小,表明模型的预测误差越小,预测性能越好。 预测结果的可视化分析对于理解和解释模型预测结果至关重要。通过图表展示模型的预测曲线与实际负荷曲线之间的对比,可以直观地评估模型的准确性和可靠性。此外,通过可视化还可以发现数据中的趋势和周期性特征,为电力系统的运行决策提供参考。 整个项目不仅是一个技术实现过程,更是一个深入理解和应用BP神经网络的实践过程。通过本项目的学习,可以掌握如何将理论知识应用于实际问题的解决中,提高解决复杂工程问题的能力。 另外,对于标签中提到的Python,虽然本项目是基于MATLAB实现的,但Python作为一种同样强大的编程语言,也广泛应用于数据科学、机器学习和人工智能领域。对于学习本项目内容的读者,也可以考虑使用Python实现相似的预测模型,以加深对不同编程环境和工具的理解。
2026-01-22 11:04:46 42KB python
1
"北京PostGIS路网数据"是一个与地理信息系统(GIS)相关的资源,它包含了北京市的路网信息。PostGIS是一种开源扩展,用于 PostgreSQL 数据库管理系统,它提供了存储、查询和操作空间数据的能力。 中的内容指出,这个资源是一个SQL文件,内含北京市的路网数据,适合于在PostGIS环境中使用。用户可以下载这个文件,然后根据自己的需求进行数据处理和格式转换。这表明文件可能包含了一系列关于道路的几何对象(如线段和多边形),例如道路的名称、类型、长度、方向以及与其他道路的连接关系等。这些数据对于城市规划、交通分析、导航系统开发等领域都极其重要。 在GIS领域,路网数据通常包括以下几个核心知识点: 1. **地理坐标系统**:PostGIS利用地理坐标系统(如WGS84)来定位道路的位置,使得数据能够在地图上准确显示。 2. **几何对象**:路网数据中的每条道路都会被表示为几何对象,如线(LineString)或多边形(Polygon),用于描绘道路的形状和边界。 3. **属性数据**:每条道路都有相关的属性信息,如道路名称、等级(高速公路、主干道、次干道等)、速度限制、方向、车道数量等。 4. **拓扑关系**:道路之间通过节点(交叉路口)相互连接,这些拓扑关系是进行路径规划、交通流分析的基础。 5. **SQL查询与空间分析**:PostGIS允许用户使用SQL语句对空间数据进行查询和分析,如查找最近的服务设施、计算两点之间的最短路径等。 6. **数据转换**:由于不同的应用可能需要不同的数据格式,用户可能需要将原始SQL数据转换为其他格式,如Shapefile、GeoJSON或KML等。 7. **数据可视化**:处理后的数据可以通过GIS软件(如QGIS、ArcGIS)或Web地图服务(如Google Maps API、OpenLayers)进行可视化展示。 在实际应用中,这些路网数据可以用于构建智能交通系统,帮助城市管理者优化交通流量,也可以为导航软件提供基础数据,实现精确的路线规划。同时,研究人员可以利用这些数据进行交通模式研究、城市规划和环境影响评估等。 "北京PostGIS路网数据"是一个有价值的资源,对于GIS专业人士和城市规划者来说,能够提供深入理解和分析北京市交通网络的能力。通过PostGIS的强大功能,用户可以根据自己的需求定制数据,从而推动各种地理空间应用的发展。
2026-01-22 11:04:04 21.97MB 路网数据
1
机械系统动力学分析及ADAMS应用教程是一本详细介绍ADAMS软件在机械系统动力学分析中应用的专业教材。ADAMS即自动动态分析软件系统,是目前世界上最著名的机械系统动力学仿真分析软件之一。该软件广泛应用于汽车、航天航空、机械设计等领域,可以进行复杂机械系统的静力学、运动学和动力学分析。 该教程介绍了虚拟产品开发与虚拟样机技术的特点、内容及其应用。虚拟产品开发是一种利用计算机技术模拟实际产品的开发过程,通过三维建模和仿真技术对产品进行设计、分析、测试和优化,可以在实际生产前预测产品的性能和可靠性。虚拟样机技术是虚拟产品开发的重要组成部分,通过计算机仿真模拟机械系统的运动和动力学行为,预测产品性能和优化设计。 机械系统动力学分析在数字化功能样机中起着至关重要的作用。数字化功能样机是通过计算机仿真技术在产品设计过程中实现对产品功能性能的模拟,它的开发依赖于对产品进行动力学分析和仿真。动力学分析主要是研究物体在外力作用下的运动规律和受力状况,对于机械系统的设计和优化具有决定性的作用。 多体系统动力学是本书的核心内容之一,主要包括多刚体系统和多柔体系统的建模、动力学方程求解以及刚性问题分析。多刚体系统动力学研究的是由多个刚体组成的系统在外力作用下的动力学行为;而多柔体系统动力学则是在多刚体系统动力学基础上考虑了部件的弹性变形和柔体动力学效应。 书中还详细介绍了ADAMS软件的基本算法,包括ADAMS建模中的概念、动力学分析算法、静力学分析、线性化分析算法,以及ADAMS软件积分器。ADAMS软件的建模概念涉及对机械系统进行仿真分析的基础知识,包括刚体和力的概念、约束和驱动的概念、坐标系的定义等。动力学分析算法是通过建立多体系统的动力学方程,求解出系统在不同时间点的运动状态。静力学分析则研究在没有运动状态变化的情况下,系统在静止状态下的受力和变形。线性化分析算法是将非线性问题近似为线性问题进行求解,这在实际工程问题中常用于快速估计系统性能。 此外,教程中还包含了作者使用ADAMS的经验和体会,并结合实际例子对机械系统动力学分析的建模、分析、优化以及专业化仿真系统的二次开发等进行了详细叙述。这使得读者不仅能够掌握理论知识,还能够了解如何在实际中运用这些知识解决具体问题。 本书适合作为高等院校“机械系统动力学分析”课程的教材,对从事机械系统数字化功能样机的建模、求解、专业化仿真系统二次开发的工程技术人具有重要的实用价值,同时也可以作为机电工程类本科、研究生的教材使用。 在计算机辅助设计的发展历程中,从20世纪50年代的C3P到90年代的M3P,计算机技术的不断进步推动了设计理念和方法的革新,促进了学科、领域的融合渗透。M3P即多学科多领域产品开发,它强调在产品开发的全过程中,各个学科和领域技术的融合和协调工作,以实现更全面的系统优化设计。这标志着计算机辅助设计技术从单一学科的应用向多学科协同、综合分析和创新设计的过渡。 机械系统动力学分析及ADAMS应用教程不仅为读者提供了一个关于ADAMS软件使用的系统学习平台,还为机械系统动力学分析提供了全面的知识体系,同时呈现了现代计算机辅助设计技术的发展趋势和应用前景。
2026-01-22 11:00:57 24.71MB ADAMS
1