基于Word2Vec+SVM对电商的评论数据进行情感分析,Python对电商评论数据进行情感分析,含数据集可直接运行
2024-05-27 13:23:03 30.15MB
基于深度学习LSTM算法的电商评论的情感分析(JD商城数据)全部资料.zip实验流程 对京东网站进行分析,并且通过分布式爬虫进行数据采集 对采集到的数据进行清洗,包括删掉重复数据,删掉垃圾数据等 对清理好的数据进行分词,停词等操作,并对结果保存到新的文档 将分词之后的数据,通过word2vec,建立词向量和索引表 对清洗后的数据,进行数据处理,将分数为1、2的定为不满意,将分数为3,4,5的定为满意 平衡正负样本数据,并且通过样本数据选出合适的文本长度值 词响亮与标签结合,生成可供训练的样本数据 建立分批(batch)函数 通过Tensorflow中的rnn模块进行lstm建模 开始训练,每1000次输出一次结果,每10000次,保存一下模型 绘制loss和accurate图像 实验总结 情感分析是一项非常重要的工作,无论是对商品满意度,电影满意度,政府满意度或者是群众情绪导向等多个领域,情感分析都是饰演着重要的角色,本实验通过大规模分布式爬虫对数据进行采集,获得到了目标数据,然后进行了数据处理,通过word2vec模型建立出了词向量和索引,在通过LSTM算法,进行了模型训练,根据最终
阿里之江杯电商评论挖掘数据集.
2022-05-06 18:10:15 1.87MB 文档资料
之江杯电商评论挖掘数据集.rar
2022-03-28 23:33:41 1.52MB nlp
1
sentiment-analysis-platform 基于LSTM的电商评论情感分析平台 技术要点: Java前端:Bootstrap4、jQuery Java后台:SpringBoot Python服务: Python3、Flask 数据库:MySQL、MongoDB 模型框架:Keras+TensorFlow 爬虫:selenium
2022-03-01 16:25:28 40.83MB JavaScript
1
使用python爬取电商平台的商品评论,对评论进行情感分析、主题分析,使用机器学习生成算法模型,搭建flask框架进行可视化展示,使用前请查看说明文档
2022-02-13 09:33:37 22KB python 电商评论 flask 情感分析
1
现如今各种APP、微信订阅号、微博、购物网站等网站都允许用户发表一些个人看法、意见、态度、评价、立场等信息。针对这些数据,我们可以利用情感分析技术对其进行分析,总结出大量的有价值信息。例如对商品评论的分析,可以了解用户对商品的满意度,进而改进产品;通过对一个人分布内容的分析,了解他的情绪变化,哪种情绪多,哪种情绪少,进而分析他的性格。怎样知道哪些评论是正面的,哪些评论是负面的呢?正面评价的概率是多少呢?   利用python的第三方模块SnowNLP可以实现对评论内容的情感分析预测,SnowNLP可以方便的处理中文文本内容,如中文分词、词性标注、情感分析、文本分类、提取文本关键词、文本相似度计
2021-12-09 18:46:07 160KB 电商
1
之江杯2019-电商评论观点挖掘 参赛日志 Text-Opinion-Mining 比赛说明: 本数据集为化妆品品类的评论数据。为保护品牌隐私,数据已做脱敏,相关品牌名等用**代替; id字段作为唯一标识对应Train_reviews.csv中的评论原文和Train_labels.csv中的四元组标签。 一条评论可能对应多个四元组标签; Train_labels.csv中的A_start和A_end表示AspectTerm在评论原文中的起始位置; O_start和O_end表示OpinionTerm在评论原文中的起始位置。 若AspectTerm为"_",则A_start和A_end为空,OpinionTerm同理; (注:预测结果不需要位置信息,仅考察四元组的预测情况) AspectTerm和OpinionTerm字段抽取自评论原文,与原文表述保持一致。 若AspectTerm或Opin
2021-11-23 20:56:12 4.78MB Python
1
train.json 之江电商评论观点挖掘比赛训练数据 比赛链接https://zhejianglab.aliyun.com/entrance/231731/introduction
2021-08-12 11:16:51 19.27MB 数据 机器学习 观点挖掘
1
基于BLSTM和注意力机制的电商评论情感分类模型.pdf
2021-07-10 09:02:20 1.57MB 电商平台 电商系统 行业数据 数据分析