如何使用Matlab进行随机森林(RF)的回归预测及其特征重要性排序。主要内容涵盖从数据准备到模型训练、预测及评估的完整流程,并提供具体代码示例帮助读者快速上手。文中还特别强调了特征重要性的计算方法以及如何根据重要性对特征进行排序,使读者能更好地理解和应用随机森林这一强大的机器学习工具。
适合人群:对机器学习有一定了解,特别是希望深入理解随机森林算法及其在Matlab环境下实现的技术人员。
使用场景及目标:① 利用随机森林进行数据回归预测;② 计算并排序特征重要性;③ 替换自有数据进行实际操作练习。
其他说明:本文提供的代码可以直接运行,但为了获得最佳效果,建议读者根据自身数据特点适当调整参数配置。此外,由于机器学习涉及大量实验验证,鼓励读者多次尝试不同设置以加深理解。
2025-09-20 14:26:51
254KB
1