信号调制方式的识别在通信系统分析中是一个极其重要的技术环节。随着通信技术的迅速进步,调制方式的种类越来越多,如何高效准确地识别和监视无线电通信信号已成为军事和民用领域亟待解决的技术难题。传统上,信号调制方式的识别主要依赖于工程师的专业经验和各类信号分析工具。 本文介绍了一种新的信号调制方式混合识别算法,该算法由冯晓东和龚鑫提出,目的是为了识别当前通信系统中使用的主要调制方式。该算法创新性地结合了瞬时特征参量和高阶累积量的特点,并通过决策树分类器来实现信号调制方式的分类识别。这种基于决策树的混合识别方法,在识别通信信号调制方式上表现出了良好的性能。 算法利用信号的谱对称性将待识别的信号分为两大类。这个步骤是基于信号功率谱的对称性来实现的,该对称性可以反映出不同的调制方式所具备的特征。随后,算法从四阶累积量中提取两个特征参数,并结合归一化中心瞬时频率的标准差以及归一化中心瞬时幅度的方差来进行类内识别。这些特征参数的数量少,但可以有效地将复杂的信号特征进行抽象和简化。 最终,决策树分类器被用来完成整个信号调制方式的识别过程。决策树是一种有监督学习方法,它通过构建决策树来对样本进行分类。在每一步中,算法选择最佳的特征来分割数据集,直至达到预定的停止条件,例如,当决策树达到了最大深度,或者所有的数据都被正确分类。 本文提到的算法具有较高的稳健性,即在通信信号质量不佳,比如信噪比较低的情况下,依然能够有效地识别出调制方式。MATLAB仿真结果验证了这一点,该算法能够在信噪比不低于6dB的情况下,实现对十种信号调制方式(AM、LSB、USB、2FSK、4FSK、BPSK、QPSK、OQPSK、16QAM、32QAM)的准确识别,并且准确率在95%以上。这说明即使在较低信噪比的条件下,该算法也能够有效地识别复杂的调制方式。 在信号调制识别领域,高阶累积量方法具有抑制高斯白噪声的能力,这使得它成为研究复杂调制识别的一个热点。高阶累积量可以更有效地表征信号的统计特性,从而为复杂信号的识别提供更加准确的依据。与之相比,基于瞬时信息的调制识别方法虽然计算量小,便于工程实现,但对复杂调制信号如MPSK、MQAM的自动识别仍然是一个难点。 关键词“瞬时特征值”指的是信号在特定瞬时的特征参数,这些参数在信号处理和识别过程中是分析信号状态的重要指标。瞬时特征值能够反映出信号在某一时刻的状态,对于信号调制方式的识别尤其重要。而“调制识别”则是指通过分析信号的特定特征来确定信号采用的调制方法,这是无线通信信号分析的一个核心任务。高阶累积量通常用于描述信号的非高斯性,在调制识别中能够提供比传统统计方法更强的区分能力,尤其是对抗高斯噪声的能力较强。 本文提出的混合识别算法结合了多种信号处理技术的优点,为信号调制方式识别提供了新的研究方向和方法。该算法不仅提高了识别的准确性,还减少了运算量,有望在未来的通信信号分析中得到广泛应用。
2025-04-19 12:57:45 262KB 瞬时特征值
1
矩阵特征值问题已成为数值计算中的一个重要组成部分,为有效求解此类问题,提出了一种求解特征值的新方法:利用非线性方程组的Newton迭代法求解特征向量,为提高迭代的收敛速度,引入同伦思想,利用插值方法,得到近似特征向量Y(N),以Y(N)作为迭代初值,从而快速求出问题的具有较高精度的解.该算法稳定性好,可并行运算,
2024-02-28 16:26:54 189KB 自然科学 论文
1
介绍了基于DEM(数字地理高程)流域信息提取的一系列方法以及详细的过程, 并提供应用实例进行验证。
2024-02-28 08:59:46 282KB 流域特征值
1
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:简支梁有限元特征值分析计算_前10阶模态和频率并作图_边界条件检验_整合整体刚度_matlab 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
2024-01-16 13:19:39 7KB matlab 开发语言
对数字求特征值是常用的编码算法,奇偶特征是一种简单的特征值。
2023-11-04 07:03:40 1KB JAVA 数字特征值
1
matlab算特征值源码Matlab中的光谱正确正交分解 SPOD()是固有正交分解(POD,也称为主成分分析或Karhunen-Loève分解)的频域形式的Matlab实现,称为频谱固有正交分解(SPOD)。 SPOD源自固定流[,2]的时空POD问题,并导致每个模式都以单个频率振荡。 SPOD模式代表动态结构,可以最佳地解决静态随机过程的统计变异性。 与该示例一起提供的大涡模拟数据是[3]中描述的0.9马赫湍流射流数据库的子集,并使用Cascade Technologies开发的非结构化流动求解器Charles计算得出。 如果您在研究或教学中使用数据库,请明确提及Brès等人。 [3]。 测试数据库包含5000个圆形湍流射流的对称分量(m = 0)的快照。 spod.m是独立的Matlab函数,不依赖工具箱。 该存储库中包含的所有其他Matlab文件都与六个示例相关,这些示例演示了代码的功能(请参见下面的文件描述)。 从示例中获得的结果的物理解释可以在[]中找到。 下载 使用浏览器 带有示例的存储库zip文件(81.5 MB): 仅适用于Matlab功能(15 KB): 在终端中使
2023-07-04 19:44:43 81.5MB 系统开源
1
1.了解图像边缘检测的原理。自己实现边缘检测算法,对特定的几幅图像进行边缘检测,并达到较好的效果。 2.了解特征提取的原理,并对图像中存在的一些特征进行特征提取。
2023-05-14 22:27:46 1.1MB 边缘检测特征值的提取
1
jacobi方法计算对称矩阵的特征值和特征向量,使用旋转矩阵的方法
2023-04-11 15:56:45 2KB jacobi
1
针对融合后的医学图像时常存在细节纹理不够清晰的问题,本文提出一种新的基于非下采样剪切波变换(Non-Subsampled Shearlet Transform,NSST)的医学图像融合算法,对多模态医学影像进行融合,增强细节结构提取的能力,提高图像融合质量,为医疗诊断提供依据.首先,将已配准的源图像进行NSST分解,得到低频子带和一系列高频子带;其次,对于低频子带系数,提出利用局域平均能量与局域标准差的合成值进行子带之间选择的融合策略,有利于完整保存基础信息,对于高频子带系数,利用改进的拉普拉斯能量和(New Sum of Modified Laplacian,NSML)的方法进行融合;接着,将融合过后的低、高频子带进行NSST的逆过程变换,从而得到融合之后的图像;最后,在灰度和彩色医学多模态图像上进行大量的实验,并选择信息熵(IE),空间频率(SF),标准差(SD)和平均梯度(AG)对融合后的图像进行质量评价.仿真结果表明,本文算法在主观视觉效果以及客观评价指标上均取得较大改善.与其他算法相比,信息熵,标准差,空间频率和平均梯度的平均值分别提高了2.99%,4.06%,1.78%和1.37%,融合后的图像包含更丰富的细节纹理信息,视觉效果更好.
1
从UCI机器学习资源库中下载Musk数据集。在此数据集上分别使用PCA和SVD方法进行特征提取,并报告获得的特征值以及特征向量结果,对数据属性进行分析,使用盒图分别对获得的最优属性进行分析和对比。 import pandas as pd import os from numpy import * import numpy as np import matplotlib.pyplot as plt import seaborn as sbn sbn.set(color_codes = True) plt.rcParams['axes.unicode_minus'] = False from scipy.stats import kstest from sklearn.preprocessing import LabelEncoder from sklearn import preprocessing import pyecharts from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D
2023-03-21 21:42:51 1.61MB Musk
1