包含PclSharp源码,和编译好的二进制文件; c#使用PclSharp框架封装最新1.14.1版本的Pcl,修复了编译错误的bug; 使用 CMake配置c++工程项目,方便添加自定义算法, PclSharp也支持.net 4.5以上任意版本
2024-12-04 18:02:43 49.47MB 点云处理
1
点云技术在现代计算机视觉和机器人领域中扮演着至关重要的角色,它允许设备理解周围环境的空间结构。本项目提供了一种使用C++实现的点云获取方案,特别针对深度相机,如Intel RealSense系列。通过这个压缩包,我们可以获得完整的源代码以及所需的SDK安装包,便于开发者快速理解和实现点云数据的采集与处理。 1. **点云获取**: 点云是三维空间中一系列离散点的集合,这些点代表了环境的几何信息。在本项目中,使用C++编程语言,开发者可以学习如何从深度相机获取并处理点云数据。点云数据通常包含每个点的三维坐标(x, y, z)以及可能的其他属性,如颜色信息。 2. **深度相机**: 深度相机,如Intel RealSense,通过同时发射红外光和接收反射光来计算物体的距离,从而生成深度信息。这种技术基于时间飞行(Time-of-Flight)或结构光等原理。Intel RealSense SDK提供了接口和工具,使开发人员能够轻松集成深度相机功能到他们的应用程序中。 3. **C++编程**: C++是一种强大的系统级编程语言,常用于开发高性能的应用程序,包括实时的图像处理和计算机视觉任务。在这个项目中,C++被用来编写获取和处理点云的代码,展示了如何利用面向对象的特性来构建高效且可维护的代码结构。 4. **SDK安装包**: "Intel.RealSense.SDK-WIN10-2.53.1.4623.exe"是Intel RealSense SDK的Windows 10版本,包含了库、头文件、示例代码和其他必要的组件。安装后,开发者可以访问到各种API,用于控制相机、捕获图像、解析深度数据等。 5. **代码文件解析**: - **获取彩色图和深度图.cpp**:这个文件展示了如何同时获取和处理来自深度相机的彩色图像和深度图像。彩色图像提供了环境的颜色信息,而深度图像则提供了距离信息。 - **获取点云.cpp**:此文件包含将深度图像转换为点云的算法。通常,这涉及到对深度图像的每一像素进行处理,计算其对应的三维坐标,并组合成点云数据结构。 - **获取相机参数.cpp**:这部分代码可能涉及读取和应用相机内参,以便校正图像畸变和精确计算三维坐标。 通过这个项目,开发者不仅可以学习到如何利用C++和Intel RealSense SDK来处理点云数据,还能深入理解深度相机的工作原理和实际应用。此外,对于想要在机器人导航、AR/VR、工业检测等领域使用点云技术的开发者来说,这是一个宝贵的资源。
2024-11-18 19:41:26 724.32MB 深度相机 realsense
1
标题 "d435i深度相机读取数据并保存到本地" 涉及到的主要技术是使用RealSense D435i深度相机获取3D点云数据,并将其存储在本地计算机上。RealSense D435i是Intel公司生产的一款高性能、多功能的深度相机,它能够提供RGB图像和深度信息,广泛应用于机器人导航、AR/VR、3D建模等领域。 我们需要了解3D点云的基本概念。3D点云是由多个三维坐标点组成的集合,每个点代表空间中的一个位置,通常附带有颜色信息。这些点通过扫描或传感器测量获得,可以用于重建物体表面的几何形状,从而实现3D建模和环境感知。 RealSense D435i相机的工作原理是利用结构光技术和ToF(Time-of-Flight)来生成深度信息。结构光技术通过投射特定图案的红外光到场景上,然后通过摄像头捕捉反射回来的图案,通过计算图案的变形程度来计算距离;ToF则通过测量光线从发射到返回的时间来确定距离。这两种方法结合使得D435i能提供精确且稳定的深度数据。 为了读取D435i相机的数据,我们需要使用Intel提供的RealSense SDK(软件开发工具包)。SDK提供了多种编程语言(如C++、Python等)的接口,使得开发者可以方便地访问相机的各种功能。以下是一个基本的步骤概述: 1. **安装SDK**:首先需要在官方GitHub仓库下载并安装适用于目标平台的RealSense SDK,确保包含相应的库和头文件。 2. **初始化相机**:在代码中,通过SDK创建一个设备实例,连接到D435i相机,设置所需的流类型(如深度图、彩色图等)和分辨率。 3. **数据流处理**:启动数据流后,SDK会持续接收相机发送的数据。开发者可以设置回调函数来处理每帧数据,比如将深度数据和RGB数据配准在一起,形成3D点云。 4. **点云生成**:从深度数据和颜色数据中,我们可以使用算法(如PCL库中的`pcl::concatenateFields`)将两者合并,生成带有颜色信息的3D点云。 5. **保存数据**:将生成的点云数据保存为本地文件,常见的格式有`.pcd`(Point Cloud Data)、`.ply`或`.xyzrgb`。可以使用PCL库或其他专门的点云处理库来完成这个任务。 6. **优化和应用**:根据实际需求,可能还需要对点云进行进一步处理,如滤波、降噪、分割等,以提高数据质量,然后应用于3D重建、目标识别等任务。 文件名 "d435i_develop" 暗示这是一个关于D435i开发的项目或教程,可能包含源代码、配置文件和说明文档。通过这个项目,你可以学习如何使用RealSense SDK从D435i获取数据,以及如何将这些数据转换为3D点云并保存到本地。在实际操作中,你将深入理解3D视觉技术和深度相机的工作原理,这对于在机器人学、计算机视觉等领域进行创新性工作至关重要。
2024-11-18 15:21:33 206.35MB 3D点云
1
视频课程下载——深度学习-3D点云实战系列课程,附源码
2024-11-11 20:33:27 195B 深度学习 课程资源
1
CloudCompare 点云工具安装包:CloudCompare-v2.13.2-setup-x64.exe,解决v2.13.1导入PCD文件时不支持中文路径等问题
2024-11-11 10:47:20 326.7MB
1
### LAS格式点云数据使用详解 #### 一、引言 LAS(Lightweight Airborne Sensor)格式是由美国摄影测量与遥感学会(American Society for Photogrammetry and Remote Sensing, ASPRS)制定的一种用于存储激光雷达(LiDAR)和其他传感器获取的三维点云数据的标准格式。LAS 1.4版本于2011年11月获得批准,并在2019年3月进行了修订,其详细规定记录在官方发布的文档中。 #### 二、LAS 1.4修订历史与比较 ##### 2.1 LAS 1.4修订历史 - **批准时间**:2011年11月,LAS 1.4版本被正式批准。 - **修订日期**:2019年3月26日,该版本进行了修订并更新至最新的R14版。 - **文档构建日期**:与修订日期相同,即2019年3月26日。 - **GitHub提交标识**:本次修订的提交ID为2ea0a5b46bbca1c05d7a7e0827ebf0eb660aead5。 - **GitHub仓库**:https://github.com/ASPRSorg/LAS ##### 2.2 LAS 1.4与之前版本的比较 LAS 1.4相对于之前的版本,在以下方面进行了改进和扩展: - **数据类型扩展**:增加了新的点云数据类型,支持更广泛的应用场景。 - **元数据增强**:提供了更加丰富的元数据支持,以便更好地描述和管理点云数据。 - **兼容性提升**:在保持与早期版本向后兼容的同时,对格式进行了一些必要的调整,以适应新的技术需求。 #### 三、LAS格式定义 LAS格式定义主要涵盖以下几个方面: ##### 3.1 遗留兼容性 为了确保LAS 1.4与早期版本(如LAS 1.1到LAS 1.3)之间的兼容性,该标准详细规定了如何在新版本中保留旧版本的数据结构,同时允许添加新的特性。 ##### 3.2 数据结构 - **头文件**:包含文件的基本信息,如创建日期、点云数据的数量等。 - **点记录**:每个点记录包括空间坐标(X、Y、Z)、强度值、颜色信息、分类码等。 - **扩展字段**:根据应用需求可以增加额外的字段来存储更多的信息,如附加的波形数据或纹理信息。 ##### 3.3 文件组织 LAS文件通常采用小端字节序存储数据,这意味着低字节存储在内存的低地址位置。此外,文件还可能包含多个“返回”(Return),每个返回对应一个激光脉冲反射回来的信息,从而能够捕获地面上不同高度的对象。 ##### 3.4 数据压缩 为了减少文件大小并提高处理效率,LAS 1.4支持多种压缩算法,如LAZ(LASzip)压缩。这种压缩方式能够在不损失数据质量的前提下显著减小文件体积。 #### 四、VS编译好的LAStools工具 ##### 4.1 LAStools简介 LAStools是一套专门用于处理LAS格式点云数据的工具集,它由多个命令行程序组成,支持各种操作,如数据转换、过滤、可视化等。这些工具不仅适用于科研人员,也适用于需要处理大量点云数据的专业人士。 ##### 4.2 VS编译环境 LAStools可以使用Visual Studio(简称VS)编译环境进行编译。通过这种方式编译出的工具集可以在Windows平台上高效运行,并且能够充分利用现代计算机硬件资源。 ##### 4.3 使用指南 - **安装配置**:首先需要安装相应的Visual Studio版本,并确保安装了必要的编译器和库文件。 - **编译过程**:按照LAStools提供的编译指南,设置编译参数并执行编译命令。 - **运行测试**:编译完成后,可以通过提供的测试数据集来验证LAStools的功能是否正常。 #### 五、总结 LAS 1.4格式作为最新的点云数据存储标准,不仅提高了数据的可读性和互操作性,还增加了更多实用的功能,使得点云数据的管理和分析变得更加高效。同时,借助于像LAStools这样的工具集,用户能够更加方便地处理大规模的点云数据,从而推动了地理信息系统(GIS)和遥感领域的技术进步。
2024-10-24 10:28:23 278KB 说明文档
1
PCX-Unity的点云导入器/渲染器 插件包 Pcx是一个自定义的导入器和渲染器,允许在Unity中处理点云数据。
2024-09-19 15:17:28 13KB shader point-cloud unity3d
1
这是我学习PCL点云配准的代码,包括了VFH特征的使用、SHOT特征描述符、对应关系可视化以及ICP配准、PFH特征描述符、对应关系可视化以及ICP配准、3DSC特征描述符、对应关系可视化以及ICP配准、Spin Image自旋图像描述符可视化以及ICP配准、AGAST角点检测、SUSAN关键点检测以及SAC-IA粗配准、SIFT 3D关键点检测以及SAC-IA粗配准、Harris关键点检测以及SAC-IA粗配准、NARF关键点检测及SAC-IA粗配准、iss关键点检测以及SAC-IA粗配准、对应点已知时最优变换求解介绍以及SVD代码示例
2024-09-03 15:17:15 996.49MB 点云配准 关键点检测
1
三维激光点云技术是现代地理信息系统(GIS)和自动驾驶领域中的核心技术之一,它通过使用激光雷达(LiDAR,Light Detection and Ranging)设备来获取环境的三维空间信息。车载点云数据,如标题和描述中提及的,是通过安装在车辆上的LiDAR系统收集的,用于描绘道路、建筑物、交通设施等周围环境的精确三维模型。 **3D 三维激光点云数据** 3D激光点云数据是通过激光雷达扫描仪生成的大量三维坐标点集合,每个点代表一个空间位置,具有X、Y、Z坐标值以及可能的其他属性如反射强度、颜色等。这种数据类型广泛应用于测绘、地质、环境科学、城市规划、自动驾驶等多个领域。点云数据能够提供高精度的地形和地表特征,为复杂环境的分析和建模提供了强有力的支持。 **道路数据** 道路数据在三维激光点云中尤为重要,尤其是在自动驾驶和智能交通系统中。通过对道路点云数据的处理,可以提取路面边界、车道线、交通标志、路缘石等关键元素,用于构建高精度的数字地图,支持车辆的自主导航和避障功能。例如,通过点云数据分析,可以识别出路面的坡度、曲率,这对于车辆控制和安全驾驶至关重要。 **LAS 文件格式** .LAS是激光雷达数据的标准文件格式,由美国激光雷达协会(ASPRS)制定。它是一种二进制格式,能够存储点云数据的原始测量值和附加信息,如时间戳、RGB颜色、激光脉冲返回次数等。LAS文件可以有效地存储大量点云数据,并且有多种开源和商业软件支持对其进行读取、处理和分析。 **车载点云** 车载点云数据是通过安装在车辆上的移动LiDAR系统收集的。这种系统通常包括高精度GPS和惯性测量单元(IMU),以确定点云的地理位置和姿态信息。车载点云数据的获取可以实现连续、动态的环境扫描,适用于实时路况监测、道路维护评估和自动驾驶车辆的环境感知。 "三维激光点云车载点云道路点云数据"是一个涵盖了地理信息技术、自动驾驶和数据处理的综合性主题。通过分析和处理.LAS格式的点云数据,我们可以获得道路的详细三维模型,进而推动智能交通系统的进步和自动驾驶汽车的安全行驶。对于迎宾路车载数据的分析,可以进一步提取道路特征,进行道路状况评估、交通流量分析,甚至为自动驾驶算法的训练提供宝贵的数据支持。
2024-08-26 18:19:02 884.84MB 道路数据 车载点云
1
三维激光扫描技术是近十年迅速发展起来的新型遥感技术, 它随着激光测距技术的出现应运而生。与传统的三维数据获取技术相比, 三维激光扫描技术具有的最大优势是它的非接触式测量和面数据的快速获取。将三维激光扫描技术应用在粮食清仓查库中, 目的是为了快速获得粮食表面的信息, 据此计算粮食体积。研究了粮仓内粮食体积的计算原理, 并分别以北京青云店粮库和中储粮涿州粮食储备库为例, 重点阐述三维激光扫描技术在清仓查库中的应用方法, 包括实地测量、后续数据处理和体积计算等。实验结果表明, 用三维激光扫描技术测量粮食体积, 速度快, 精度高, 有较强的实用性。
2024-07-17 16:33:57 5.08MB 激光技术 点云数据 laser
1