本数据集共包含照片5932张,共分为四类:Bacterialblight(白叶枯病)1584张,Blast(枯萎病、稻瘟病)1440张,Brownspot(褐斑病)1600张,Tungro(水稻东格鲁病)1308张。其中训练集(train):共4948张 ;测试集(val):共984张。 所有照片标签(.txt)均已手动标注,可直接放入YOLOV模型进行训练使用 整个项目地址:https://download.csdn.net/download/qq_63630507/89861781 近年来,随着深度学习技术的快速发展,目标检测算法在农业领域中识别作物病虫害的应用成为研究热点。在此背景下,一套精确的、标注完备的数据集对于训练高效的模型至关重要。本数据集针对水稻病虫害的识别问题,提供了丰富的训练和测试资源,旨在通过深度学习方法,特别是YOLOv5模型,提高水稻病虫害的检测精度和效率。 数据集详细分类为四类水稻病虫害问题,包括白叶枯病、枯萎病(稻瘟病)、褐斑病和水稻东格鲁病。每一种病虫害均有相应的高清图像进行记录,图片数量分别为1584张、1440张、1600张和1308张,总计5932张。这些图片涵盖了多种不同的农田环境和病虫害的外观形态,为模型提供了丰富的训练场景。 数据集被分为训练集和测试集两部分,其中训练集共4948张图片,用于模型的训练过程;测试集共984张图片,用于模型性能的验证和评估。通过这样的数据划分,研究者可以有效地测试模型在未知数据上的泛化能力。 所有图片都已经进行了详细的标注工作,对应的标签文件(.txt格式)已生成,这为直接利用YOLOv5模型进行训练提供了便利。标签文件中的信息严格对应图片中的目标,详细标注了水稻病虫害的位置和类别信息,确保了训练数据的质量和准确性。 数据集的共享方式为通过网络下载,提供了方便快捷的获取途径。整个项目的地址公布在互联网上,研究者可以根据提供的链接下载到完整的数据集,开始相关的模型开发和应用研究工作。 在人工智能与农业结合的领域,这类数据集的出现对于提高作物病虫害的监测能力具有重要意义。基于YOLOv5模型的水稻病虫害目标检测数据集不仅可以应用于学术研究,也可以在实际农业生产中得到应用,帮助农民及时发现病虫害,采取相应的防治措施,提高水稻的产量和质量。 数据集的构建基于大量的实地拍摄和收集工作,反映出当前农业信息化和智能化的发展趋势。利用先进的计算机视觉技术,配合深度学习算法,可以极大地提高病虫害检测的效率和精确度,减少人工检测的成本和时间,对实现智慧农业具有积极作用。随着技术的不断进步,未来在农业领域中将会有更多的应用场景被开发出来,进一步推动农业现代化的进程。同时,该数据集的成功构建和应用也将激励更多的人工智能技术和方法被引入到农业病虫害检测和管理中,以科技的力量促进农业生产的可持续发展。
2025-05-09 15:44:29 196.24MB 目标检测 数据集 yolov
1
本项目通过CPU共训练50轮,精度趋近于0.8。若想进一步提高精度,可增加数据集或增加训练轮数。 数据集地址:https://download.csdn.net/download/qq_63630507/89844778 在当前的智能化农业发展中,运用先进的图像识别和深度学习技术对农作物病虫害进行自动检测与诊断已经变得尤为重要。本项目聚焦于水稻病虫害的自动识别,采用的是目前较为先进的目标检测模型Yolov5。Yolov5作为一种基于深度学习的单阶段目标检测算法,以其运行速度快,检测精度高的特点,广泛应用于实时目标检测任务中。通过本项目的实施,旨在构建一个高精度的水稻病虫害智能识别系统。 在项目实施过程中,研究团队首先需要准备一个全面且高质量的水稻病虫害图像数据集。该数据集包含不同种类的水稻病害和虫害的图片,每张图片都应经过详细的标注,标注信息包括病虫害的类别及位置等,这为模型提供了训练的基础。通过数据集的准备,研究团队确保了模型训练有足够的信息去学习和识别各种病虫害特征。 考虑到计算资源和时间成本,项目选择了在CPU环境下进行模型训练,共计训练了50轮。尽管在计算能力有限的情况下,但通过精心设计的网络结构和合理的参数调整,模型的精度已经趋近于0.8,这是一个相对较高的准确率,表明模型在识别水稻病虫害方面已经具备了较好的性能。然而,项目报告也指出,若要追求更高的精度,可以考虑增加更多的数据集或延长训练轮数,以此来进一步提升模型的泛化能力和准确度。 项目最终构建的模型不仅能够帮助农民及时发现和处理病虫害问题,降低经济损失,还可以作为智能农业系统的一部分,实现对大规模种植区域的病虫害自动监测与预警。通过引入人工智能技术,不仅能够减轻农业工作者的负担,还能够提高作物的产量和品质。 在技术推广与应用方面,项目组还提供了数据集下载链接,便于更多的研究者和开发者获取和使用这些数据,共同推动智能农业识别技术的发展。这种开放共享的态度,有助于促进整个行业技术进步和农业生产的现代化。 本项目的实施是智能农业领域的一次重要尝试,它不仅推动了机器学习在农业领域的应用,更为水稻病虫害的精准识别提供了有效的方法和工具。通过本项目的成功实施,为未来利用智能化技术解决农业问题提供了新的视角和途径,具有重要的现实意义和深远的影响力。
2025-05-09 09:49:51 328.98MB 机器学习 Yolo 人工智能
1
【标题】"水稻灯诱害虫数据集(RLPD)"是针对农业生物技术领域的一个专业数据集,它专门收集了与水稻害虫相关的图像信息,以帮助科研人员进行害虫识别、监测以及防治的研究。这个数据集包含了6000多张高质量的图片,这些图片都是在实际的田间环境中通过特定的灯诱装置捕捉到的,能够真实反映害虫在自然状态下的形态特征。 【描述】提到,该数据集涵盖了9种主要的水稻害虫,这意味着研究者可以针对这九种害虫进行深入的学习和分析。这些害虫可能包括但不限于稻飞虱、稻螟虫、稻纵卷叶螟、稻蓟马、稻象甲、稻水蝇等常见的水稻病虫害。每张图片都经过精心标注,指明了害虫在图像中的位置,这种目标检测标签对于机器学习和深度学习算法的训练至关重要。这些标签使得模型能够理解并学习害虫的形态特征,从而在未来实现自动化的害虫识别系统。 在研究生研究期间创建这样的数据集是一项重要的工作,它不仅是个人学术成就的体现,也是对整个科研社区的贡献。这样的数据集可以用于多个研究方向,比如计算机视觉中的目标检测算法优化,农业生态学中的害虫行为研究,甚至可以辅助开发精准农业技术,如智能农业无人机的自动监测系统。 【标签】"数据集"表明这是一个专门用于科研的数据集合,它为研究人员提供了一个基准,可以用来训练和评估他们的算法性能。数据集的质量和多样性对于模型的准确性和泛化能力有着直接影响,因此RLPD的广泛多样性和精确标注使其成为此类研究的理想资源。 【压缩包子文件的文件名称列表】"LTPD(1)"可能是数据集的主要文件,其中可能包含了所有的图像数据以及对应的元数据,如害虫类别、捕获日期、地理位置等信息。这些信息对于理解害虫的分布、活动模式以及它们对环境的响应具有重要价值。 "水稻灯诱害虫数据集(RLPD)"是一个宝贵的科研资源,它将促进农业生物技术、计算机视觉和精准农业等多个领域的交叉研究,推动害虫智能识别技术的发展,并最终有助于提高水稻的产量和质量,保障全球粮食安全。
2024-07-08 16:59:32 86.84MB 数据集
1
数据来源 Google Earth Engine云计算平台,Sentinel-2遥感影像 数据产生或加工方法 首先基于Google Earth Engine云计算平台和Sentinel-2遥感影像构建了多维时间序列分类特征集;结合地面调查和Collect Earth、历史时期谷歌高清影像和目视解译的方法收集大量的地面样本点;然后利用随机森林模型、特征优选算法,自2017年起逐年绘制作物类型分布图;最后,利用历史时期的分类模型和分类器迁移思想,实现无样本年份农作物信息提取。 数据空间投影 Projected Coordinate System:WGS_1984 _UTM_Zone_51N Geographic Coordinate System:WGS_1984
2024-05-20 14:00:44 83.47MB
水稻矮缩病毒非结构蛋白Pns6是病毒的复制因子,陈倩,张玲华,水稻矮缩病毒(Rice dwarf virus, RDV)主要由黑尾叶蝉以持久增殖型方式传播。RDV编码的3个非结构蛋白Pns6、Pns11和Pns12是病毒在介体细胞内侵
2024-03-01 16:11:20 755KB 首发论文
1
水稻染色体片段代换系苗期耐冷评价及主效位点qSCT11效应验证,凡凯,袁志阳,水稻是我国种植面积第二大粮食作物。低温是水稻生产中主要灾害,全球每年有1500万公顷水稻在生育阶段遭受冷害,给粮食产量造成巨�
2024-02-24 10:13:17 488KB 首发论文
1
水稻灌溉的最大限制因素是水和氮。 有效的水和氮管理对于灌溉水稻种植系统中的可持续水稻生产仍然至关重要。 由于全球人口的快速增长和气候变化,未来的水稻生产将在很大程度上取决于制定有效利用水和氮的战略和实践。 因此,该研究着手评估在各种氮和水管理方法下灌溉水稻的农艺,水生产率和经济分析。 为了达到既定目标,2015和2016年的作物季节在加蓬大学土壤与灌溉研究中心进行了田间和盆栽试验。 田间试验采用分块样地设计,以水管理处理为主样,以氮肥作为子样处理。 盆实验以五次重复的随机完整块设计进行。 水管理方法是: 连续浸水(SC),干湿土壤状况(AWD)和潮湿土壤状况(MC)。 氮肥施用率; 没有氮肥(N0),60千克氮/公顷(N1)和90千克氮/公顷(N2)。 记录了诸如水稻的产量和产量参数,用水,水生产率,成本和收益之类的数据。 从盆栽和田间试验获得的结果表明,AWD和SC的水稻单产均等,而MC处理的水稻单产低。 使用氮肥,单产为90 kg N / ha时观察到更高的产量。 90 kg N / ha淹没的交互作用产生最高的谷物产量。 氮肥对用水和水生产率的影响依次为N2> N1> N0,而水
2024-01-14 19:57:54 818KB
1
2013年在阿肯色州派恩布拉夫测试了35个新杂种的产量和农艺性状。这些杂种由7个雌性不育系UP-1s,UP-3s,100s,101s,105s,111s和113A和5培育而成。雄性父系恢复系PB2,PB5,PB12,PB13和PB18。 在水稻生产中很受欢迎的近交品种弗朗西斯(Francis)被用作支票(CK)。 结果表明,10个杂种的产量比CKFrancis高20.3%-31.7%。 其他18个杂种的产量比CK高10.1%-19.4%,其余杂种的产量比CK高2.5%-9.2%。 杂交UP-3s / PB5的最高产量为12,983.8 kg /公顷,超支率为31.7%。 杂交UP-3s / PB18和115A / PB18的产量为12,333.7公斤/公顷,超支25%。 杂交UP-1s / PB12的产量为12,324.6 kg //公顷,超支24.9%。 不育系UP-3s,113A,105s和101s具有良好的可组合性,其杂种的平均谷物产量分别比CK高出21.5%,20.34%,17.2%和16.2%。 恢复系PB18,PB5和PB12具有良好的可组合性,其杂种的平均谷物产量分别比C
2024-01-14 19:56:12 327KB 新杂交稻
1
水稻品种产量影响因子浅析,季彪俊,陈启锋,利用主成分分析法和回归分析法分析影响水稻区试品种产量的因子,结果表明,影响产量的主成分因子分别是热量、海拔-雨量、穗重和�
2023-05-31 10:26:15 351KB 首发论文
1
DeepLabv3+水稻稻穗语义分割模型在Pytorch当中的实现 ### 目录 1. [性能情况 Performance](#性能情况) 2. [所需环境 Environment](#所需环境) 3. [注意事项 Attention](#注意事项) 4. [文件下载 Download](#文件下载) 5. [训练步骤 How2train](#训练步骤) 6. [预测步骤 How2predict](#预测步骤) 7. [评估步骤 miou](#评估步骤) 8. [参考资料 Reference](#Reference) ### 所需环境 torch==1.2.0 ### 注意事项 代码中的deeplab_mobilenetv2.pth和deeplab_xception.pth是基于VOC拓展数据集训练的。训练和预测时注意修改backbone。 ### 训练步骤 #### a、训练voc数据集 1、将我提供的voc数据集放入VOCdevkit中(无需运行voc_annotation.py)。 有问题请关注私聊,包此代码的答疑服务,基本秒回,不满意加球球包退款,可接受定制服务
2023-04-08 12:04:03 376.6MB DeepLabv3+ 水稻稻穗分割 pytorch 语义分割