基于Yolov5模型进行水稻病虫害目标检测整个项目(包含最近一次训练结果)

上传者: 63630507 | 上传时间: 2025-05-09 09:49:51 | 文件大小: 328.98MB | 文件类型: ZIP
本项目通过CPU共训练50轮,精度趋近于0.8。若想进一步提高精度,可增加数据集或增加训练轮数。 数据集地址:https://download.csdn.net/download/qq_63630507/89844778 在当前的智能化农业发展中,运用先进的图像识别和深度学习技术对农作物病虫害进行自动检测与诊断已经变得尤为重要。本项目聚焦于水稻病虫害的自动识别,采用的是目前较为先进的目标检测模型Yolov5。Yolov5作为一种基于深度学习的单阶段目标检测算法,以其运行速度快,检测精度高的特点,广泛应用于实时目标检测任务中。通过本项目的实施,旨在构建一个高精度的水稻病虫害智能识别系统。 在项目实施过程中,研究团队首先需要准备一个全面且高质量的水稻病虫害图像数据集。该数据集包含不同种类的水稻病害和虫害的图片,每张图片都应经过详细的标注,标注信息包括病虫害的类别及位置等,这为模型提供了训练的基础。通过数据集的准备,研究团队确保了模型训练有足够的信息去学习和识别各种病虫害特征。 考虑到计算资源和时间成本,项目选择了在CPU环境下进行模型训练,共计训练了50轮。尽管在计算能力有限的情况下,但通过精心设计的网络结构和合理的参数调整,模型的精度已经趋近于0.8,这是一个相对较高的准确率,表明模型在识别水稻病虫害方面已经具备了较好的性能。然而,项目报告也指出,若要追求更高的精度,可以考虑增加更多的数据集或延长训练轮数,以此来进一步提升模型的泛化能力和准确度。 项目最终构建的模型不仅能够帮助农民及时发现和处理病虫害问题,降低经济损失,还可以作为智能农业系统的一部分,实现对大规模种植区域的病虫害自动监测与预警。通过引入人工智能技术,不仅能够减轻农业工作者的负担,还能够提高作物的产量和品质。 在技术推广与应用方面,项目组还提供了数据集下载链接,便于更多的研究者和开发者获取和使用这些数据,共同推动智能农业识别技术的发展。这种开放共享的态度,有助于促进整个行业技术进步和农业生产的现代化。 本项目的实施是智能农业领域的一次重要尝试,它不仅推动了机器学习在农业领域的应用,更为水稻病虫害的精准识别提供了有效的方法和工具。通过本项目的成功实施,为未来利用智能化技术解决农业问题提供了新的视角和途径,具有重要的现实意义和深远的影响力。

文件下载

资源详情

[{"title":"( 2000 个子文件 328.98MB ) 基于Yolov5模型进行水稻病虫害目标检测整个项目(包含最近一次训练结果)","children":[{"title":"optimizer_config.json <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 41.56KB </span>","children":null,"spread":false},{"title":"README.zh-CN.md <span style='color:#111;'> 41.29KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.56KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.55KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 58.92KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 50.13KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 42.26KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 34.35KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 23.80KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 21.09KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 21.06KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 20.27KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 20.20KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 19.69KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 18.44KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 15.90KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 15.11KB </span>","children":null,"spread":false},{"title":"UI1.py <span style='color:#111;'> 14.98KB </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 13.24KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 10.93KB </span>","children":null,"spread":false},{"title":"clearml_utils.py <span style='color:#111;'> 9.47KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 8.91KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 8.56KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 7.95KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 6.77KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 5.80KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"comet_utils.py <span style='color:#111;'> 4.71KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"triton.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"restapi.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"example_request.py <span style='color:#111;'> 365B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"get_imagenet.sh <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"get_coco.sh <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"userdata.sh <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"mime.sh <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"get_imagenet1000.sh <span style='color:#111;'> 742B </span>","children":null,"spread":false},{"title":"get_imagenet100.sh <span style='color:#111;'> 738B </span>","children":null,"spread":false},{"title":"get_imagenet10.sh <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"download_weights.sh <span style='color:#111;'> 641B </span>","children":null,"spread":false},{"title":"get_coco128.sh <span style='color:#111;'> 619B </span>","children":null,"spread":false},{"title":"000000000196.txt <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"000000000164.txt <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"000000000315.txt <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"000000000257.txt <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"000000000110.txt <span style='color:#111;'> 937B </span>","children":null,"spread":false},{"title":"000000000149.txt <span style='color:#111;'> 878B </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 831B </span>","children":null,"spread":false},{"title":"000000000294.txt <span style='color:#111;'> 805B </span>","children":null,"spread":false},{"title":"000000000540.txt <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"000000000643.txt <span style='color:#111;'> 722B </span>","children":null,"spread":false},{"title":"000000000113.txt <span style='color:#111;'> 712B </span>","children":null,"spread":false},{"title":"000000000127.txt <span style='color:#111;'> 671B </span>","children":null,"spread":false},{"title":"000000000357.txt <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"000000000542.txt <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"000000000564.txt <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"000000000071.txt <span style='color:#111;'> 630B </span>","children":null,"spread":false},{"title":"000000000544.txt <span style='color:#111;'> 625B </span>","children":null,"spread":false},{"title":"000000000531.txt <span style='color:#111;'> 601B </span>","children":null,"spread":false},{"title":"000000000241.txt <span style='color:#111;'> 545B </span>","children":null,"spread":false},{"title":"000000000389.txt <span style='color:#111;'> 535B </span>","children":null,"spread":false},{"title":"000000000584.txt <span style='color:#111;'> 531B </span>","children":null,"spread":false},{"title":"000000000446.txt <span style='color:#111;'> 517B </span>","children":null,"spread":false},{"title":"000000000308.txt <span style='color:#111;'> 507B </span>","children":null,"spread":false},{"title":"000000000395.txt <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"000000000438.txt <span style='color:#111;'> 497B </span>","children":null,"spread":false},{"title":"000000000368.txt <span style='color:#111;'> 495B </span>","children":null,"spread":false},{"title":"000000000641.txt <span style='color:#111;'> 475B </span>","children":null,"spread":false},{"title":"000000000384.txt <span style='color:#111;'> 444B </span>","children":null,"spread":false},{"title":"000000000520.txt <span style='color:#111;'> 442B </span>","children":null,"spread":false},{"title":"000000000536.txt <span style='color:#111;'> 434B </span>","children":null,"spread":false},{"title":"000000000328.txt <span style='color:#111;'> 431B </span>","children":null,"spread":false},{"title":"000000000612.txt <span style='color:#111;'> 420B </span>","children":null,"spread":false},{"title":"000000000089.txt <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"000000000488.txt <span style='color:#111;'> 385B </span>","children":null,"spread":false},{"title":"000000000659.txt <span style='color:#111;'> 350B </span>","children":null,"spread":false},{"title":"000000000049.txt <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"000000000109.txt <span style='color:#111;'> 322B </span>","children":null,"spread":false},{"title":"000000000532.txt <span style='color:#111;'> 316B </span>","children":null,"spread":false},{"title":"000000000247.txt <span style='color:#111;'> 313B </span>","children":null,"spread":false},{"title":"000000000074.txt <span style='color:#111;'> 312B </span>","children":null,"spread":false},{"title":"000000000009.txt <span style='color:#111;'> 312B </span>","children":null,"spread":false},{"title":"000000000486.txt <span style='color:#111;'> 311B </span>","children":null,"spread":false},{"title":"000000000201.txt <span style='color:#111;'> 308B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明