智慧医疗肺部CT检测数据集VOC+YOLO格式4103张12类别是一套专为智慧医疗应用而设计的肺部CT影像资料集。该数据集包括4103张肺部CT扫描图片,全部以Pascal VOC格式和YOLO格式进行标注。每张图片都对应有VOC格式的.xml标注文件和YOLO格式的.txt标注文件,用于描绘图片中的12种不同的肺部异常情况。 数据集共分为12个类别,包括:主动脉扩张(Aortic enlargement)、肺不张(Atelectasis)、钙化(Calcification)、心脏肥大(Cardiomegaly)、实变(Consolidation)、间质性肺病(ILD)、浸润(Infiltrate)、结节-肿块(Nodule-Mass)、胸腔积液(Pleural effusion)、胸膜增厚(Pleural thickening)、气胸(Pneumothorax)和疤痕(Scarring)。每个类别在数据集中均有特定数量的标注框,例如主动脉扩张有2540个标注框,肺不张有79个标注框等,总计标注框数为12738。 值得注意的是,该数据集在YOLO格式中的类别顺序并不按照上述列表排列,而是以labels文件夹中的classes.txt文件为准。使用该数据集的用户在进行模型训练时需要注意这一点。 该数据集采用了labelImg这一标注工具进行矩形框标注,对于标注的规则非常明确。标注过程中,标注者需要根据肺部CT影像的特点,识别出上述的12种肺部病变情况,并在影像中画出矩形框以准确地界定这些病变区域。 数据集的所有图片都经过了准确而合理的标注,以保证其用于医学影像分析与机器学习模型训练时的准确性。然而,数据集的提供方并未对该数据集训练出的模型精度或权重文件作出任何保证,这意味着用户在使用该数据集训练模型时,仍需自行进行模型性能的评估和校验。 此外,数据集不包含分割路径的txt文件,仅包含jpg图片以及对应的VOC格式xml文件和YOLO格式txt文件。数据集的使用者可以通过图片预览来了解数据集的质量和内容。在实际应用中,该数据集可支持医学图像分析、计算机辅助诊断、图像分割以及深度学习模型训练等多种智慧医疗研究与开发活动。
2025-12-05 10:04:08 1.01MB 数据集
1
本项目是一个集成了人工智能深度学习技术的现代化气象检测系统,采用前后端分离架构,结合YOLO目标检测算法,实现了对气象现象的智能识别与分析。系统提供了完整的用户管理、实时检测、历史记录查询等功能,为气象监测提供了高效、准确的技术解决方案。 链接:https://blog.csdn.net/XiaoMu_001/article/details/151227681 在当前的信息技术领域,将深度学习技术应用于智能气象检测系统,不仅能够极大提高气象数据处理的效率和准确性,还能为气象预测、灾害预警等提供有力的技术支撑。基于Django和Vue3框架构建的前端与后端分离的系统架构,已经成为开发高效、稳定web应用的主流方式,而YOLO(You Only Look Once)作为先进的实时对象检测系统,因其速度快、准确度高等特点,成为了在图像中识别和分类对象的热门选择。 Django作为一个高级的Python Web框架,它鼓励快速开发和干净、实用的设计,具备了诸如自动化数据库迁移、强大内置的用户认证系统、完善的第三方库支持等优点。Vue.js则是构建用户界面的渐进式JavaScript框架,易于上手,易于集成,与Django可以无缝连接,共同构成一个现代化的前后端分离的Web应用。 YOLO算法是一种流行的目标检测算法,其在检测速度和准确性方面均表现出色,它通过单一网络直接从图像像素到检测框坐标和类概率的端到端预测,使得它在实时检测系统中具有巨大的优势。它的设计理念是将目标检测视为一个回归问题,将边界框和概率作为预测结果,相比于其它复杂的目标检测系统,YOLO模型更注重效率和速度。 智能气象检测系统的核心功能包括用户管理、实时检测、历史记录查询等。用户管理功能确保了不同级别用户的权限设置与管理,保证了系统的安全性和操作的便利性。实时检测功能依托于YOLO算法,能够对传入的气象图像进行实时分析,快速识别出气象现象,如雷暴、雨雪等,并给出相应的分析报告。历史记录查询则允许用户查看过去的气象数据和分析结果,对于长期的气象研究和预测具有重要意义。 另外,这样的系统往往还配备了友好的用户界面,通过Vue.js构建的前端界面可以提供流畅且直观的用户体验。这些界面包括气象数据的实时展示、历史数据的图表分析、系统操作的简洁入口等,极大地提升了气象数据处理的可视化程度和用户交互的便捷性。 基于Django和Vue3结合YOLO算法构建的智能气象检测系统,不仅集成了现代Web开发的先进技术,还融入了先进的人工智能算法,为气象领域的数据处理和灾害预防提供了强大的工具。它不仅能够提高气象数据处理的速度和准确性,还能帮助相关人员更好地理解天气状况,对潜在的气象灾害进行预警,具有十分重要的实用价值和社会意义。
2025-12-03 20:06:00 33.39MB Django vue yolo
1
数据集-目标检测系列- 火龙果 检测数据集 pitaya >> DataBall 注文件格式:xml​​ 项目地址:https://github.com/XIAN-HHappy/ultralytics-yolo-webui 通过webui 方式对ultralytics 的 detect 检测任务 进行: 1)数据预处理, 2)模型训练, 3)模型推理。 脚本运行方式: * 运行脚本: python webui_det.py or run_det.bat 根据readme.md步骤进行操作。 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501
2025-12-02 23:02:39 3.47MB yolo python 目标检测
1
YOLO(You Only Look Once)是一种流行的实时对象检测系统,它能够快速准确地在图像和视频流中识别和定位多个对象。YOLO将对象检测任务作为一个回归问题来处理,直接在图像中预测边界框(bounding boxes)和概率,这种方法与传统的对象检测方法(如R-CNN系列)不同,后者采用区域建议网络(region proposal networks)来生成候选区域,然后对每个区域进行分类。 YOLO模型的最新版本包括YOLOv3、YOLOv4和YOLOv5等。它们在速度和准确性方面不断进行优化,尤其是在实时视频处理方面表现出色。YOLOv4和YOLOv5等版本,由于引入了更先进的深度学习架构和训练技巧,如使用Darknet-53作为骨干网络,以及引入SPP(Spatial Pyramid Pooling)模块、PAN(Path Aggregation Network)等技术,使得模型在保持高准确度的同时,速度也得到了大幅度提升。 在处理视频流时,YOLO系统能够逐帧处理视频中的图像,实时检测帧中的多个对象,并在检测到的对象周围绘制标注框。这些标注框通常是矩形,它们的位置和大小由模型预测得到,用于标示出预测的对象。标注框的颜色和样式可以根据用户需求进行定制,以便于区分不同类别的对象或突出显示特定信息。 动态显示对象尺寸是YOLO系统的一个重要功能,它能够根据标注框提供的信息,计算并显示对象的实际尺寸。这通常需要系统预知视频流中对象与摄像机之间的距离或者摄像头的参数(如焦距和视野范围),结合图像处理中的透视变换原理,计算出实际对象的大小。 在实际应用中,YOLO检测视频流并动态显示标注框和对象尺寸的过程通常包括以下几个步骤:捕获视频流帧;将每帧图像送入YOLO模型进行处理;然后,YOLO模型输出每个检测到的对象的类别、边界框坐标以及对象的尺寸信息;接着,处理这些信息,将其添加到视频流的帧上,通常以覆盖在对象周围的矩形框和尺寸数字的形式显示;输出带有标注信息的视频帧,并进行实时显示或存储。 YOLO的这一功能在多种场景下具有广泛的应用价值,包括智能交通监控、安全监控、工业自动化、零售分析等。它不仅能够提高监控的效率,还能为数据收集和分析提供实时的、高精度的视觉支持。 YOLO模型的易用性和性能使其成为开发者和研究人员的首选对象检测工具之一。许多开源项目和库,如Darknet、PyTorch-YOLOv5、OpenCV等,都提供了YOLO模型的实现,使得研究人员和开发者能够轻松地将YOLO集成到他们的项目中,并进行实时的视频对象检测。 YOLO检测视频流并动态显示标注框和对象尺寸的能力是实时计算机视觉应用中的一个关键技术,它通过结合深度学习和经典图像处理技术,为多种行业和领域提供了高效的视觉识别解决方案。随着深度学习技术的不断进步,YOLO及其衍生模型将继续在精确度和速度上取得突破,进一步扩大其应用范围。
2025-12-02 11:47:54 78.42MB yolo
1
数据集介绍: 本文件介绍了一个用于目标检测的铁轨缺陷检测数据集,该数据集遵循Pascal VOC格式和YOLO格式,包含4020张标注图片,以及对应的标注信息。数据集共分为4个类别,分别是“corrugation”(波纹)、“spalling”(剥落)、“squat”(凹坑)和“wheel_burn”(轮轨磨痕)。每个图片都有相应的.xml文件和.txt文件,用于VOC和YOLO两种格式的目标定位和分类标注。 数据集格式与组成: 数据集包含4020张.jpg格式的图片文件,每张图片都有一个对应的标注文件。其中.xml文件用于Pascal VOC格式的标注,包含了图片中目标的位置和类别信息。而.txt文件则遵循YOLO格式,用于YOLO算法在训练时的图像标注数据处理,同样包含了图像中缺陷目标的坐标信息和类别。 标注类别与数量: 标注数据集一共包含四个类别,每个类别都有相应的标注框数。具体来说,"corrugation"类别标注框数为1452个,"spalling"类别为2208个,"squat"类别为2949个,"wheel_burn"类别为546个。总计标注框数达到了7155个,这意味着有些图像中可能包含多个缺陷目标。 标注工具与规则: 该数据集的标注工作采用了labelImg这一流行的图像标注工具来完成,适用于机器学习和计算机视觉项目。标注时,对各类铁轨缺陷的目标用矩形框进行标注,并在矩形框内填写对应的类别名称,确保每个缺陷都有明确的标记和分类。 数据增强与使用声明: 数据集说明中特别提到,大约有3/4的图片是通过数据增强手段获得的,这可能包括旋转、缩放、翻转等方式对原始图片进行变换得到的新图片。数据增强是提高模型泛化能力的常用方法。此外,数据集提供者声明本数据集不对训练模型或权重文件的精度做任何保证。因此,使用者在使用数据集进行模型训练时应谨慎,并自行验证模型效果。 图片总览与标注示例: 尽管没有提供具体的图片和标注示例,但可以合理推测,数据集中包含了铁轨在各种环境和不同光照条件下的照片。此外,还应该提供了一些带有标注框和标签的图片示例,以便使用者了解数据集的质量和标注的精确度,这对于模型训练来说是非常有帮助的。 总结而言,本数据集为铁轨缺陷检测提供了丰富的标注图片资源,遵循了常用的VOC和YOLO标注格式,并详细说明了类别、数量和标注规则。数据集经过了一定的数据增强处理,但使用时需要注意模型性能的独立验证。
2025-11-30 13:27:23 4.5MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144424169 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4270 标注数量(xml文件个数):4270 标注数量(txt文件个数):4270 标注类别数:8 标注类别名称:["Casting_burr","Polished_casting","burr","crack","pit","scratch","strain","unpolished_casting"]
2025-11-29 18:12:51 415B 数据集
1
YOLOv7是一款高效且精确的目标检测模型,是YOLO(You Only Look Once)系列的最新版本。YOLO系列在目标检测领域具有广泛的应用,因其快速的检测速度和相对较高的精度而受到赞誉。YOLOv7的核心改进在于优化了网络结构,提升了性能,并且能够适应各种复杂的实际场景。 我们要理解什么是预训练模型。预训练模型是在大规模数据集上,如ImageNet,预先进行训练的神经网络模型。这个过程使模型学习到大量通用特征,从而在新的任务上进行迁移学习时,可以更快地收敛并取得较好的结果。Yolov7.pt就是这样一个预训练模型,它已经学习了大量图像中的物体特征,可以直接用于目标检测任务或者作为基础进行微调,以适应特定领域的应用。 YOLOv7在设计上继承了YOLO系列的核心思想——一次预测,它通过单个神经网络同时预测图像中的多个边界框及其对应的类别概率。相比于早期的YOLO版本,YOLOv7在架构上有以下几个关键改进: 1. **Efficient Backbone**:YOLOv7采用了更高效的主干网络,如Mixer或Transformer-based架构,这些网络能更好地捕捉图像的全局信息,提高检测性能。 2. **Scale Adaptation**:YOLOv7引入了自适应尺度机制,使得模型能够适应不同大小的物体,提高了对小目标检测的准确性。 3. **Self-Attention Mechanism**:利用自注意力机制增强模型的特征学习能力,帮助模型关注到更重要的区域,提升检测效果。 4. **Weighted Anchor Boxes**:改进了锚框(Anchor Boxes)的设计,通过加权方式动态调整锚框大小,更好地匹配不同比例和尺寸的目标。 5. **Data Augmentation**:使用了更丰富的数据增强技术,如CutMix、MixUp等,扩大了模型的泛化能力。 6. **Optimization Techniques**:优化了训练策略,如动态批大小、学习率调度等,以加速收敛并提高模型性能。 在使用Yolov7.pt进行目标检测时,有以下步骤需要注意: 1. **环境配置**:确保安装了PyTorch框架以及必要的依赖库,如torchvision。 2. **模型加载**:加载预训练模型yolov7.pt,可以使用PyTorch的`torch.load()`函数。 3. **推理应用**:使用加载的模型进行推理,将输入图像传递给模型,得到预测的边界框和类别。 4. **后处理**:将模型的预测结果进行非极大值抑制(NMS),去除重复的检测结果,得到最终的检测框。 5. **微调**:如果需要针对特定领域进行优化,可以使用Transfer Learning对模型进行微调。 YOLOv7的预训练模型yolov7.pt提供了一个强大的起点,对于学习目标检测、进行相关研究或开发实际应用的人来说,都是极具价值的资源。通过理解和运用其中的关键技术,我们可以进一步提升模型的性能,满足多样化的计算机视觉需求。
2025-11-28 11:59:10 66.73MB 预训练模型 神经网络
1
加油站加油行为规范检测数据集是一项用于训练和评估计算机视觉模型的资源,其目的在于识别和规范在加油站中的安全行为。本数据集包含1136张标注图片,其中涵盖了加油站内的各种加油行为。数据集以两种主流格式提供:Pascal VOC格式和YOLO格式。Pascal VOC格式包含jpg格式的图片文件和对应的xml文件,用于训练目标检测模型,其中xml文件描述了图片中物体的位置与类别。YOLO格式则包括jpg图片和txt文件,这些txt文件含有物体位置和类别的信息,便于YOLO算法进行快速识别。 数据集的标注类别分为两类:“dissallow”(禁止行为)和“normal”(规范行为)。每个类别下都标注了一定数量的矩形框,分别指示图片中出现的不同行为。根据提供的信息,“dissallow”类别的框数为479,而“normal”类别的框数为687,总框数达到1166个,这为机器学习提供了丰富的信息以进行学习和判断。数据集内的图片不仅包括原始拍摄的图片,也包含了通过图像增强技术处理过的图片,以提高模型的泛化能力。 此数据集由专门的标注工具labelImg生成,每个矩形框内都标有相应的类别信息。需要注意的是,数据集所包含的标注信息是准确且合理的,但数据集本身并不保证使用它训练出的模型或权重文件的精度。这意味着,尽管数据集提供了可靠的数据和标准,但最终模型的性能还需要通过实际应用和验证来确定。 在数据集的使用中,用户应注意到YOLO格式中的类别顺序并非按照“dissallow”和“normal”的顺序进行排列,而是以“classes.txt”文件中的顺序为准。因此,在应用YOLO格式的数据集时,用户需要参考此文本文件,以确保对类别识别的准确性。 数据集提供了一个图片预览功能,用户可以随机抽取16张标注图进行查看,以直观地了解数据集的质量和内容。这有助于用户评估数据集是否符合其研究或开发的需求,进而决定是否采用该数据集进行进一步的工作。
2025-11-27 19:07:57 2.41MB 数据集
1
yolo安全帽检测数据集是一种用于训练和测试yolo模型的数据集,旨在识别和检测图像中的安全帽行为,戴安全帽和未戴安全帽。该数据集包含了6000张以上的图像样本,这些样本涵盖了各种安全帽场景,例如室内、室外、人群中等; 戴安全帽和未戴安全帽识别数据集超高识别率,支持YOLOV5、支持YOLOV8格式的标注,近6000张以上戴安全帽和未戴安全帽场景下的安全帽图片; 文件分images和labels,images为图像,labels为标注好的txt文件,个人用labelImg手动标注,目前个人在yolov5和yolov8上跑过,mAP@0.5在0.9以上,懂行的直接下载直接用。
2025-11-27 10:14:23 900.22MB 数据集 目标检测 计算机视觉 yolo
1
在IT领域,尤其是计算机视觉和深度学习分支,数据集是训练和评估模型的关键资源。"民族服饰yolo识别数据集"是一个专为训练物体检测模型,特别是针对民族服饰设计的专用数据集。在这个数据集中,重点是利用图像识别技术来区分和定位不同民族的服饰,如汉族、回族、壮族、苗族和满族的服装。 YOLO(You Only Look Once)是一种实时目标检测系统,它在处理图像时能够同时识别并定位出多个对象。YOLO的强大之处在于它的速度和准确性,使得它广泛应用于自动驾驶、监控视频分析和图像识别等领域。在这个数据集中,每张图片都经过了预处理,包括图像翻转和对比度增强,这些操作可以增加数据集的多样性,防止模型过拟合,并帮助模型更好地理解服饰在各种条件下的表现。 数据集通常包含两部分:图像文件和标注信息。在这个案例中,图像文件是6150张经过处理的图片,展示了不同民族的服饰。这些图片是训练模型的基础,模型会学习识别不同服饰的特征和模式。而XML格式的标注数据集则提供了关于图片中服饰位置的详细信息,包括边界框坐标,这将指导模型学习如何准确地定位服饰在图片中的位置。 使用这个数据集,开发者或研究者可以构建一个YOLO模型,该模型能识别不同民族的服饰。他们需要将数据集划分为训练集和验证集,以便在训练过程中监控模型的性能。接着,他们会使用深度学习框架(如TensorFlow、PyTorch等)来实现YOLO模型,加载数据集,调整超参数,然后进行多轮迭代训练。在训练过程中,模型会逐渐学习到不同民族服饰的特征,并能对新的图片进行预测。 在模型训练完成后,评估阶段至关重要。通过计算指标如平均精度(mAP)、召回率和精确率,研究者可以了解模型在识别各民族服饰方面的效果。如果模型的性能不理想,可以通过调整模型架构、优化算法或者增加数据增强技术来进一步提升其表现。 此外,这个数据集还可以用于比较和改进现有的YOLO版本,比如YOLOv3、YOLOv4等,或者是与其他目标检测算法(如Faster R-CNN、SSD)进行性能对比,推动民族服饰识别技术的进步。 "民族服饰yolo识别数据集"是一个专门为少数民族服饰识别定制的训练资源,它可以促进计算机视觉领域的研究,尤其是对于目标检测和深度学习应用。通过使用这个数据集,我们有望开发出更精准、更快速的民族服饰识别模型,这对于文化遗产保护、时尚设计、甚至是智能安防等领域都有潜在的应用价值。
2025-11-27 00:50:04 307.1MB 数据集
1