自述文件 ##目标## 该项目将在android下使用VlFeat + OpenCV来构建可通过使用某些检测/分类算法通过摄像头拍照来识别物体的应用程序。 old-Notes(用于jni-myold文件夹版本) 必须编辑Application.mk以添加“ APP_PLATFORM:= android-9”,否则将无法成功链接。 参考: 。 还可以交叉参考ndk-build教程。 注释(用于jni文件夹)## 这是用于较新的版本和构建系统,因为较旧的jni包含过时的文件和库。 要修复构建错误,请检查Android.mk是否有一些链接的库,构建标志/宏。 如果对XXX错误信息有一些未定义的引用,则应为: 有些函数定义不明确,也许我们在实现时都调用了某些函数,尝试比较源代码,找到它并将其添加到我们的仓库中 如果原始的VLfeat没有一个,则应该是Makefile的定义,因为我们
2026-01-28 11:34:01 25.18MB
1
Android Application Programming with OpenCV 3 is a practical, hands-on guide to computer vision and mobile app development. It shows how to capture, manipulate, and analyze images while building an application that combines photography and augmented reality. To help the reader become a well-rounded developer, the book covers OpenCV (a computer vision library), Android SDK (a mobile app framework), OpenGL ES (a 3D graphics framework), and even JNI (a Java/C++ interoperability layer). Now in its second edition, the book offers thoroughly reviewed code, instructions, and explanations. It is fully updated to support OpenCV 3 and Android 5, as well as earlier versions. Although it focuses on OpenCV's Java bindings, this edition adds an extensive chapter on JNI and C++, so that the reader is well primed to use OpenCV in other environments.
2026-01-28 11:32:16 10.84MB Android OpenCV
1
《OpenCV计算机编程攻略》第三版的图片集资源,是一个非常宝贵的辅助学习材料,它包含了与教程内容紧密相关的各类图像,对于初学者来说是深入理解OpenCV和计算机视觉概念的重要工具。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,广泛应用于图像处理、模式识别和机器学习等领域。 本压缩包“images.zip”中包含的图片,旨在配合教程,以视觉方式展示各种算法的工作原理和应用实例。这些图片可能包括: 1. **基础图像处理**:如滤波器的效果展示(高斯滤波、中值滤波等)、边缘检测(Canny、Sobel、Laplacian等)的前后对比,以及色彩空间转换(如RGB到HSV)的示例。 2. **特征检测与匹配**:可能包含SIFT、SURF、ORB等特征点检测算法的图像,以及使用BFMatcher、FLANN等方法进行特征匹配的结果。 3. **物体检测与识别**:HOG(Histogram of Oriented Gradients)用于行人检测,Haar级联分类器用于人脸识别,以及物体检测的其他方法如YOLO、SSD等的示例。 4. **图像分割**:包括阈值分割、区域生长、水平集、GrabCut等技术的视觉呈现。 5. **图像变换**:如仿射变换、透视变换、旋转、缩放等操作的实例。 6. **深度学习模型的输入输出**:CNN(卷积神经网络)模型训练过程中的数据增强图像,以及模型预测结果的可视化。 7. **计算机视觉理论**:例如光流、立体视觉、结构光等复杂概念的示意图。 8. **机器学习应用**:决策树、随机森林、支持向量机等在图像分类问题上的应用案例。 通过这些图片,学习者能直观地看到每一步操作对原始图像的影响,加深对OpenCV函数和计算机视觉算法的理解。对于初学者来说,这比纯文字描述更容易消化吸收,能够提高学习效率,激发探索兴趣。同时,这些图片也可以作为个人项目或实验的参考,帮助开发者验证自己的代码是否正确执行了预期操作。 “images.zip”不仅是一个图片集合,更是一套丰富的学习资源,它为OpenCV的学习者提供了直观的视觉支持,使抽象的理论知识变得生动易懂。如果你正在学习OpenCV或计算机视觉,这个压缩包无疑是你宝贵的参考资料。
2026-01-23 10:54:05 76.44MB openCV 计算机视觉
1
使用固定的摄像头,对准桌面,背景采用纯色,推荐白色。要求将螺丝和螺母放到摄像头视场内,对其进行识别与定位,在视频中圈出螺丝与螺母位置,并给出质心位置,并说明种类(螺丝或螺母)。推荐流程:降、二值化、形态学处理、包络及轮廓分析、特征分析、识别、质心求取。 (1)每一步图像处理有对应窗口输出 能够提取螺丝螺母的位置(2) 能够准确识别螺丝螺母并给出质心,方案合理(3) (4)友好的图形化界面
2026-01-22 11:20:03 67.65MB opencv
1
OpenCV(开源计算机视觉库)是一个强大的跨平台计算机视觉库,最初由Intel研发,现在由它自己的非营利组织Itseez维护。版本2.4.5是该库的一个早期但仍然广泛使用的版本,包含了丰富的图像处理和计算机视觉功能。虽然官方可能不再提供此特定版本的直接下载,但可以通过描述中提到的外部网站获取。 OpenCV的核心功能包括: 1. 图像处理:OpenCV提供了多种滤波器,如高斯滤波、中值滤波和 sobel 边缘检测,用于图像平滑、锐化和边缘检测。此外,还包括色彩空间转换,如从BGR到灰度或HSV的转换。 2. 物体检测:OpenCV包含Haar特征级联分类器,用于人脸和其他特定对象的检测。还有基于Histogram of Oriented Gradients (HOG) 的行人检测算法。 3. 特征匹配:OpenCV支持SIFT(尺度不变特征变换)、SURF(加速稳健特征)和其他特征描述符,这些在图像匹配、三维重建和SLAM(Simultaneous Localization and Mapping)等领域非常有用。 4. 图像和视频读写:OpenCV可以轻松地读取、显示和保存各种图像和视频格式,如JPEG、PNG、BMP和AVI等。 5. 图形用户界面:OpenCV提供了简单的GUI工具,如imshow函数,用于显示图像和创建基本的交互式窗口。 6. 机器学习和深度学习:虽然在2.4.5版本中,深度学习的支持相对有限,但它包含了传统的机器学习算法,如支持向量机(SVM)、随机森林和神经网络。 7. 相机校准和立体视觉:OpenCV提供了相机标定的工具,可以消除镜头畸变,进行单目和双目立体视觉计算,从而实现3D重建。 8. 三维重建和运动分析:OpenCV可以处理图像序列,估计物体和相机的运动,以及进行三维重建。 9. 图像分割:OpenCV包含多种图像分割算法,如阈值分割、区域生长和水平集方法,可用于将图像划分为不同的有意义部分。 10. 实时处理:OpenCV的设计考虑了性能,因此非常适合实时应用,如视频分析和机器人导航。 在安装OpenCV 2.4.5时,提供的"opencv2.4.5.txt"可能是安装指南或者包含配置和编译信息的文本文件,帮助用户在不同平台上正确集成和使用库。由于OpenCV是一个C++库,开发者需要理解基本的C++编程和链接库的概念。此外,对于Python或其他语言的支持,还需要设置相应的接口。 OpenCV 2.4.5是一个功能强大的工具,尽管较新版本增加了更多功能和优化,但对于一些特定项目和老系统来说,2.4.5仍然是一个可靠的选择。通过理解和掌握OpenCV的这些功能,开发者可以在图像处理、计算机视觉和机器学习等多个领域实现创新应用。
2026-01-21 22:41:22 147B opencv
1
功能特点 标定功能: 圆形标定:使用已知半径的圆形物体进行标定 矩形标定:使用已知尺寸的矩形物体进行标定 自定义标定:支持自定义物体标定(开发中) 测量功能: 圆形测量:测量圆形零件的半径 矩形测量:测量矩形零件的长度和宽度 支持与期望尺寸比较,计算误差 支持保存测量结果 输入方式: 图片输入:上传图片进行标定或测量 摄像头输入:使用摄像头实时捕获图像进行标定或测量 安装说明 确保已安装Python 3.7或更高版本 克隆或下载本项目到本地 安装依赖包: pip install -r requirements.txt 使用方法 运行应用: streamlit run app.py 在浏览器中打开显示的URL(通常是http://localhost:8501) 使用流程: 用户登录: 首次使用需要注册账号 使用已有账号登录系统 根据用户权限访问相应功能 首先进行标定: 图片模式:选择"标定"模式,上传标定图片,输入实际尺寸,点击"开始标定" 摄像头模式:选择"标定"模式,点击"打开摄像头",调整物体位置,输入实际尺寸,点击"开始标定" 然后进行测量: 图片模式:选择"测量"模式,上传测量图片,输入期望尺寸,点击"开始测量" 摄像头模式:选择"测量"模式,点击"打开摄像头",调整物体位置,输入期望尺寸,点击"开始测量" 查看测量结果,可选择保存结果 文件结构 app.py:主应用程序 auth.py:用户认证和权限管理模块 home_page.py:首页界面和导航模块 image_processing.py:图像处理模块 camera_utils.py:摄像头操作和图像采集 text_utils.py:文本处理和格式化 requirements.txt:依赖包列表 calibration/:存储标定数据 results/:存储测量结果 users/:用户数据和配置文件存储
1
OpenCV(开源计算机视觉库)是一个强大的跨平台计算机视觉库,包含了众多图像处理和计算机视觉的算法。这个“opencv-4.8.0”压缩包很可能是OpenCV库的4.8.0版本源代码或者预编译的二进制文件。在本篇文章中,我们将深入探讨OpenCV的核心概念、功能以及如何在不同的平台上安装和使用它。 OpenCV主要由以下几个关键部分组成: 1. 图像处理:OpenCV提供了丰富的函数用于图像的基本操作,如读取、显示、保存图像,以及调整图像大小、色彩空间转换(例如从RGB到灰度),直方图均衡化等。 2. 特征检测与匹配:OpenCV支持多种特征检测算法,如SIFT(尺度不变特征变换)、SURF(加速稳健特征)、ORB(快速角点检测)等,这些特征对于物体识别、图像拼接和图像检索等任务至关重要。 3. 机器学习与深度学习:OpenCV集成了多种机器学习算法,如支持向量机(SVM)、随机森林(Random Forest)、Adaboost等。此外,它还支持深度学习框架,如TensorFlow和DNN模块,可以用来训练和部署卷积神经网络(CNN)进行图像分类、目标检测等任务。 4. 视觉几何:OpenCV提供了计算相机标定、姿态估计、单应性矩阵、三维重建等几何变换的工具,这对于计算机视觉中的许多实际应用,如增强现实、自动驾驶等非常有用。 5. 实时视频处理:OpenCV可以方便地从摄像头捕获视频流,并进行实时处理,如人脸识别、运动分析等。 6. 图像分割:OpenCV提供基于阈值、区域生长、边缘检测等多种图像分割方法,有助于识别图像中的特定对象或区域。 7. 追踪:OpenCV包含多种物体追踪算法,如KCF追踪器、MIL追踪器、CSRT追踪器等,可用于视频中的目标连续追踪。 安装OpenCV: - 在Windows上,可以通过下载预编译的库文件,然后配置环境变量和编译器设置来使用。 - 在Linux系统中,通常通过包管理器(如apt-get或yum)安装OpenCV的库文件,然后在项目中链接这些库。 - 对于Mac用户,可以通过Homebrew或者手动编译源代码来安装。 - 开发者还可以使用conda环境管理工具在Python中安装OpenCV的Python接口。 使用OpenCV编程: OpenCV支持多种编程语言,包括C++、Python、Java等。在代码中,你可以调用OpenCV提供的函数进行图像处理。例如,用Python读取图像并显示的简单示例: ```python import cv2 # 读取图像 img = cv2.imread('image.jpg') # 显示图像 cv2.imshow('Image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` OpenCV是一个功能强大、广泛应用的计算机视觉库,无论你是进行学术研究还是开发实际应用,都能从中受益。这个"opencv-4.8.0"压缩包将为你提供实现这些功能的基础,无论是进行图像处理、特征检测、机器学习还是其他视觉任务。在使用前,确保按照相应的平台指南正确安装和配置OpenCV,以便充分利用其强大的功能。
2026-01-17 10:52:20 257.44MB opencv
1
树莓派飞控STM32 ROS无线控制水下机器人巡检竞赛代码实战指南,水下巡检竞赛代码,树莓派控制飞控stm32ros无线控制水下机器人控制水下机器人,只是实现巡检的功能,可以让你快速上手了解mvlink协议,前提得是pixhawk和树莓派,飞控树莓派,是针对巡检的代码,阈值纠偏 中心点纠偏,pix2.4.8 树莓派4b ,水下机器人巡检; 树莓派控制; STM32ROS; 无线控制; MVLink协议; Pixhawk; 阈值纠偏; 中心点纠偏; 树莓派4b。,“Pixhawk与树莓派联合驱动的水下机器人巡检代码——MVLink协议快速上手教程”
2026-01-11 02:06:08 77KB kind
1
本文详细介绍了在树莓派4B上安装Ubuntu 20.04、配置VNC远程桌面以及安装ROS Noetic的完整步骤。内容包括两种安装Ubuntu的方法(使用Imager文件或镜像文件)、查询树莓派IP地址、SSH远程登录、更新源地址、安装桌面环境、允许root登录、远程桌面连接、设置中文、安装ROS、配置环境变量以及构建软件包依赖关系。每一步都提供了详细的命令和操作指南,适合初学者和有一定经验的用户参考。 树莓派4B是一款由树莓派基金会推出的单板计算机,以其高性价比、强大的功能和广泛的应用而闻名。Ubuntu 20.04则是一款稳定且功能丰富的Linux发行版,深受开发者的青睐。ROS Noetic,也就是机器人操作系统Noetic,为研究和开发机器人提供了一个软件框架。在这篇安装指南中,作者为我们详细介绍了如何在树莓派4B上安装Ubuntu 20.04,并配置VNC远程桌面以及安装ROS Noetic。 文章详细讲解了两种安装Ubuntu 20.04的方法。一种是使用Imager文件,这是一种方便快捷的安装方式,用户只需按照提示选择相关配置即可完成安装。另一种是使用镜像文件,这种方式需要用户对Linux系统有一定的了解,但在某些特定情况下可能会更加灵活。 安装完Ubuntu后,文章指导用户如何查询树莓派的IP地址以及通过SSH进行远程登录。这对于管理树莓派远程操作来说是一个非常实用的功能。接着,作者详细说明了如何更新源地址,这对于获取最新的软件包和安全更新至关重要。同时,文章还介绍了安装桌面环境,允许root登录的步骤,这为用户提供了更为直观的操作界面和更高级别的管理权限。 为了让树莓派的使用更加便捷,文章还对如何进行远程桌面连接、设置中文界面等进行了说明。这些设置能极大地改善用户的使用体验。在安装ROS Noetic部分,作者详细指导用户如何进行安装,并介绍了配置环境变量以及构建软件包依赖关系的方法。这些步骤对于任何想要在树莓派上进行机器人开发和研究的用户来说都是必不可少的。 此外,这篇文章不仅适合初学者,对于有一定经验的用户来说也是一个宝贵的参考资料。每一步都提供了详细的命令和操作指南,使得这篇指南既详细又易于遵循。文章的实用性得到了保证,无论是对于简单的树莓派学习,还是对于复杂的机器人开发项目,这篇文章都能提供极大的帮助。 这篇指南将树莓派4B的系统安装、远程桌面配置、ROS开发环境搭建等过程进行了系统的阐述,给出了步骤和方法,降低了对操作系统的配置和学习障碍,为树莓派的用户群提供了一份详实的参考手册。
2026-01-07 10:27:28 7KB 软件开发 源码
1
pyhton 基于opencv LBPH算子的人脸识别,通过pc摄像头获取视频流,获取帧图像,从而进行人脸识别,并框出人脸,由于训练集中只有本人一人的图片,目前只能识别本人,如需增加,需增加训练图片,并创建相应的目录,目录名以名字命名。
2026-01-07 09:20:54 4KB python LBPH
1