OpenCV是一个广泛使用的开源计算机视觉库,它包含了各种图像处理和计算机视觉的算法。在本套程序中,我们将深入探讨如何使用OpenCV部署SCRFD(Squeeze-and-Excitation Residual Face Detection)人脸检测模型,这是一个高效且准确的人脸检测框架。此程序提供了C++和Python两种编程语言的实现方式,方便不同背景的开发者使用。值得注意的是,这个项目仅仅依赖于OpenCV库,这意味着你无需额外安装其他依赖包即可进行人脸检测。 我们需要理解什么是SCRFD。SCRFD是基于深度学习的方法,它改进了传统的ResNet网络结构,引入了Squeeze-and-Excitation模块来增强特征学习,从而提高人脸检测的精度。该模型在WIDER FACE数据集上进行了训练,可以有效处理复杂场景下的人脸检测任务。 对于C++实现,你需要具备C++编程基础以及对OpenCV C++ API的理解。程序可能包括加载预训练的SCRFD模型、解析图像数据、运行预测并显示检测结果等步骤。关键在于如何利用OpenCV的dnn模块加载模型,并将图像数据转化为模型所需的格式。此外,还需注意内存管理和多线程优化,以提高程序的运行效率。 Python版本的实现则更为直观,因为Python的语法更简洁,且OpenCV Python接口与C++接口相似。你需要导入OpenCV库,然后加载模型,读取图像,将图像数据输入模型进行预测,最后展示检测结果。Python版本通常更适合快速开发和调试,尤其对于初学者而言。 在实际应用中,你可能需要对输入图像进行预处理,例如调整大小、归一化等,以适应模型的要求。同时,后处理步骤也很重要,包括非极大值抑制(NMS)来去除重复的检测框,以及将检测结果转换为人类可读的坐标。 为了使用这套程序,你需要确保你的环境中已经安装了OpenCV。你可以通过pip或conda命令来安装OpenCV-Python,或者通过编译源代码来安装OpenCV C++库。安装完成后,你可以解压提供的zip文件,将其中的源代码文件放入你的项目中,根据你的需求选择C++或Python版本进行编译和运行。 在开发过程中,你可能需要调试模型的性能,比如检查模型加载是否成功,预测速度是否满足需求,以及检测精度是否达到预期。此外,你还可以尝试调整模型参数,如阈值设置,以优化模型的表现。 本套程序提供了一种基于OpenCV的简单方式来实现高效的人脸检测。无论是C++还是Python,都能让你快速上手并实现实际应用。通过深入理解和实践,你将能够更好地掌握计算机视觉中的深度学习技术,尤其是人脸检测这一重要领域。
2025-08-14 09:47:45 20.56MB
1
OpenCV(开源计算机视觉库)是计算机视觉和机器学习领域广泛应用的一个强大工具,它提供了丰富的API,支持多种编程语言,包括C++、Python、Java等。它包含了最新的特性和优化,以满足开发者在图像处理、特征检测、对象识别、深度学习等多个方面的需要。 OpenCV 3.4.16是一款在计算机视觉和机器学习领域得到广泛应用的开源工具库,它的名字由开源计算机视觉库(Open Source Computer Vision Library)缩写而来。作为该领域内一个重要的开源项目,OpenCV提供了大量的计算机视觉功能,这些功能包括但不限于图像处理、特征检测、物体识别、运动分析、深度学习等等。它由一系列的C++库构成,同时也提供Python、Java等语言的接口,便于不同背景的开发者使用。 OpenCV的核心设计目标是提供一个易于使用的计算机视觉软件库,它不仅速度快,而且能够提供最常用的视觉处理功能。它支持多平台运行,包括Windows、Linux、Mac OS、Android和iOS等操作系统。作为版本3.4.16中的一个重要版本,它引入了新的特性和优化,以进一步满足开发者在多个方面的需要,比如在图像处理、视频分析和机器学习等方面。 该版本中特别值得注意的是它在深度学习方面的增强。OpenCV在该版本中加入了对深度神经网络(Deep Neural Networks, DNN)模块的支持,使得开发者能够更加便捷地在自己的计算机视觉应用中利用深度学习技术。DNN模块支持包括Caffe、Torch/PyTorch和TensorFlow等在内的多种深度学习框架模型,使得模型的加载和执行更加简单。 此外,OpenCV 3.4.16还强化了其在图像处理方面的功能,比如提供了更多的图像滤波器和形态学操作,改进了特征检测和描述符的算法,增加了对边缘检测和图像分割新算法的支持。这些功能和改进极大地提升了库在处理实际应用问题中的性能和可靠性。 在对象识别方面,OpenCV 3.4.16继续加强了对物体检测和跟踪算法的优化。例如,加入了更多的机器学习方法,提高了识别的准确率和速度。在运动分析方面,OpenCV提供了多种光流算法和相机标定工具,帮助开发者进行运动估计和三维重建。 为了便于开发者的使用和学习,OpenCV还提供了大量的示例程序和文档,这些资源是理解OpenCV功能和API的宝贵资料。开发者可以通过这些示例快速了解如何使用OpenCV进行各种计算机视觉任务。而且,由于OpenCV的开源性,它还拥有一个非常活跃的社区,社区中的成员会不断地为库的改进和优化提供帮助。 在技术细节上,OpenCV 3.4.16作为一个较为成熟的版本,它的API设计遵循了现代编程实践,比如采用了现代的C++特性,包括模板和STL容器等。同时,为了提高性能,OpenCV在底层实现了大量的优化,如SIMD指令集的使用等。这些优化使得OpenCV不仅在个人计算机上运行良好,甚至在一些嵌入式系统和移动设备上也能展现卓越的性能。 OpenCV 3.4.16作为一款功能全面、性能卓越的计算机视觉库,它在计算机视觉和机器学习领域的应用是不可替代的。无论是在学术研究还是工业开发中,它都扮演着重要的角色,为开发者提供了强大的视觉处理工具,极大地促进了相关技术的发展和应用。
2025-08-12 16:38:41 185.34MB opencv
1
pycharm2024 opencv image viewer 免费插件是一种专为PyCharm集成开发环境设计的辅助工具,它利用了OpenCV库强大的图像处理功能,为用户提供了便捷的图像查看和分析能力。通过此插件,开发者可以在PyCharm中直接打开和查看图像文件,无需离开开发环境或手动调用外部图像查看软件。该插件的安装方法简单明了,用户只需通过PyCharm的设置界面找到插件管理部分,然后选择“install plugins from disk”,浏览到下载的插件文件,通常是一个JAR文件或符合PyCharm插件格式的压缩包,进行安装即可。安装成功后,用户可以在PyCharm的工具栏或视图菜单中找到“OpenCV Image Viewer”选项,快速打开图像文件进行浏览和分析。 该插件的具体操作方式可能包含多种图像查看功能,例如缩放、旋转、调整亮度和对比度等,甚至可能具备一些基础的图像处理功能,如边缘检测、颜色空间转换等,这对于需要在开发过程中频繁查看或处理图像数据的开发者来说,可以显著提高工作效率和便利性。此外,由于使用了OpenCV这一广泛认可的图像处理库,该插件能够支持多种格式的图像文件,并且能够处理复杂的图像数据,使其成为一个功能强大的工具。 虽然该插件被标记为免费,但这并不意味着它没有潜在的限制或要求。例如,使用该插件可能需要用户已经安装了OpenCV库,或者在使用过程中可能需要用户进行一些配置来确保插件与系统中的OpenCV版本兼容。此外,免费软件有时也可能会附带广告、限制某些高级功能的使用,或者可能需要用户定期注册或更新插件才能继续使用。 pycharm2024 opencv image viewer 免费插件为PyCharm用户提供了一个方便的途径来集成图像处理功能到他们的开发工作流程中,这可以极大地提升图像处理项目的开发效率和便捷性。用户应当留意安装和使用过程中的任何附加要求,并根据自己的需求决定是否安装和使用该插件。
2025-08-12 16:14:30 246KB opencv
1
**OpenCV 人脸识别系统详解** OpenCV(Open Source Computer Vision Library)是一个强大的计算机视觉库,它包含了大量的图像处理和计算机视觉算法,广泛应用于图像识别、机器学习、深度学习等领域。在本项目中,我们将深入探讨如何利用OpenCV构建一个人脸识别系统。 1. **人脸识别基础** 人脸识别是计算机视觉中的一个重要分支,主要涉及人脸检测、特征提取和识别匹配三个步骤。OpenCV 提供了 Haar 分类器和 Local Binary Patterns (LBP) 等方法进行人脸检测。Haar 特征是一种基于图像强度直方图的局部特征,而 LBP 是一种描述像素邻域灰度变化的简单有效方法。 2. **Haar特征与AdaBoost算法** 在OpenCV中,人脸检测通常采用预训练的Haar级联分类器,它是通过AdaBoost算法训练得到的。AdaBoost是一种弱分类器组合成强分类器的算法,通过多次迭代选择最能区分人脸和非人脸特征的弱分类器,并加权组合,最终形成级联分类器。 3. **特征提取** 人脸识别的关键在于特征提取。常用的方法有Eigenfaces、Fisherfaces和Local Binary Patterns Histograms (LBPH)。Eigenfaces是基于PCA(主成分分析)的方法,它将人脸图像投影到低维空间;Fisherfaces使用LDA(线性判别分析)来提高分类性能;LBPH则是基于局部像素对比度的特征,适用于光照变化较大的情况。 4. **OpenCV的人脸识别接口** OpenCV 提供了 `cv::CascadeClassifier` 类来进行人脸检测,`cv::FaceRecognizer` 接口进行人脸识别。`cv::FaceRecognizer` 包括EigenFaceRecognizer、FisherFaceRecognizer 和 LBPHFaceRecognizer 几种模型,可以根据应用场景选择合适的模型。 5. **项目实现流程** - **数据准备**:收集人脸图像并标注,用于训练和测试模型。 - **人脸检测**:使用预训练的Haar级联分类器检测图像中的人脸区域。 - **特征提取**:从检测到的人脸区域提取特征,如使用LBPH方法。 - **模型训练**:用提取的特征和对应的标签训练识别模型。 - **识别过程**:对新图像进行同样的预处理,提取特征,然后用训练好的模型进行识别。 - **结果评估**:通过混淆矩阵、准确率等指标评估识别系统的性能。 6. **优化与应用** 为了提高识别效果,可以尝试以下策略: - 数据增强:通过对原始图像进行旋转、缩放、裁剪等操作,增加模型的泛化能力。 - 使用深度学习方法:如卷积神经网络(CNN),可学习更高级别的特征表示,提高识别精度。 - 实时应用:结合OpenCV的视频流处理功能,实现实时人脸识别。 通过学习和实践这个基于OpenCV的人脸识别系统,不仅可以深入了解OpenCV的基本操作,还可以掌握人脸识别技术的核心原理和实现技巧,对于提升图像识别领域的技能大有裨益。同时,这个项目也提供了丰富的学习资源,适合初学者和进阶者进行研究和探索。
2025-08-11 09:20:31 1.99MB OpenCV 人脸识别 http://downl 基于opencv的
1
OpenCV是一个开源的计算机视觉和机器学习软件库,它包含了丰富的图像处理和计算机视觉相关算法,如特征检测、对象识别、机器学习等。CUDA(Compute Unified Device Architecture)是NVIDIA推出的一种通用并行计算架构,允许开发者使用C语言来开发能够在NVIDIA GPU上运行的并行计算程序。本次提供的文件“opencv-4.12-cuda-12.4-vc-rel.zip”是一个压缩包,它包含了利用Visual Studio编译好的OpenCV4.12版本,这一版本集成了CUDA 12.4的支持,是一个release版本,意味着它是为稳定使用而设计的,而非开发阶段的版本。 在使用这个压缩包之前,用户需要确保自己拥有NVIDIA的GPU硬件以及相应的CUDA支持。此版本的OpenCV可以充分利用GPU的计算能力,进行高性能的图像处理和计算机视觉任务。这对于需要进行实时视频处理、三维重建、图像识别等需要大量计算资源的应用来说尤为重要。 此外,由于这个版本是用Visual Studio编译的,因此开发者需要在Windows环境下使用Visual Studio开发工具。开发者在使用过程中应该仔细阅读文档和说明,确保库文件的正确配置,以及所有依赖项都被正确安装和设置。 在安装和配置好环境之后,开发者可以开始利用这个版本的OpenCV进行开发工作。例如,可以使用OpenCV提供的函数和类进行图像的读取、处理、显示、保存等操作,也可以利用OpenCV的深度学习模块,进行人脸检测、物体识别等任务。而CUDA的集成意味着上述任务中需要大量计算的部分可以在GPU上运行,极大提高处理速度。 需要注意的是,虽然CUDA版本的OpenCV提供了强大的性能,但同时也需要较高的硬件配置和相应的编程知识。开发者在使用时应该对CUDA编程有一定的了解,这样才能充分利用GPU的加速能力。此外,使用CUDA版本的OpenCV可能会遇到一些与硬件直接相关的调试和兼容性问题,开发者需要有一定的解决问题的能力。 opencv-4.12-cuda-12.4-vc-rel.zip这个压缩包文件对于有NVIDIA GPU且需要进行高性能计算任务的计算机视觉开发者来说,是一个非常有价值且强大的工具。它不仅提供了一个功能全面、性能卓越的计算机视觉处理库,而且还利用了GPU加速的特性,使得开发者能够更好地应对复杂的图像处理和计算机视觉挑战。
2025-08-09 09:45:14 82.18MB OpenCV CUDA
1
在计算机视觉领域,OpenNI(Open Natural Interaction)是一个开源框架,用于与传感器设备交互,如Kinect,以获取和处理深度图像和彩色图像。OpenNI提供了API,使得开发者能够轻松地读取和显示这些图像数据。另一方面,OpenCV(Open Source Computer Vision Library)是一个强大的图像处理库,它支持多种图像分析和计算机视觉任务。在这个项目中,OpenCV被用来调用OpenPose模型,这是一个实时的人体姿态估计算法,可以识别出图像中人体的关键关节位置。 我们需要了解OpenNI的工作原理。OpenNI通过与硬件设备通信,能够获取到原始的深度图像和彩色图像数据。深度图像是由红外传感器生成的,表示每个像素点在空间中的距离,而彩色图像是RGB摄像头捕获的,用于提供色彩信息。OpenNI提供了接口,使得开发者可以通过编写代码来读取这些图像,并进行进一步的处理,例如显示在屏幕上。 接下来,OpenCV被用于处理OpenNI获取的彩色图像。OpenCV拥有丰富的图像处理函数,可以进行图像预处理,如灰度化、直方图均衡化等,为OpenPose的输入做好准备。OpenPose模型是基于深度学习的,它可以处理多个关键点检测任务,包括人体姿态估计。这个模型能够识别出图像中人物的各个关节,如肩、肘、腕、髋、膝和踝等,并以2D坐标的形式输出。 在调用OpenPose模型时,我们需要先将其集成到OpenCV项目中。这通常涉及到将模型的权重和配置文件加载到内存,然后创建一个推理引擎来运行模型。OpenCV的dnn模块可以方便地实现这一点。一旦模型准备就绪,我们就可以通过OpenCV的`imread`函数读取OpenNI的彩色图像,然后传递给OpenPose进行姿态估计。OpenPose会返回每个关键点的位置,这些信息可以用来绘制关节连线,从而可视化人体姿态。 为了实现这一功能,你需要编写一段代码,大致分为以下几个步骤: 1. 初始化OpenNI,连接到设备,设置数据流(深度和彩色)。 2. 在OpenNI数据流回调函数中,获取深度图像和彩色图像数据。 3. 使用OpenCV的函数显示深度图像和彩色图像。 4. 对彩色图像进行预处理,如调整尺寸以匹配OpenPose模型的输入要求。 5. 使用OpenCV的dnn模块加载OpenPose模型,运行模型并获取关键点坐标。 6. 在原始彩色图像上绘制关键点和关节连线,然后显示结果。 通过这个项目,你可以深入理解OpenNI、OpenCV以及OpenPose在实际应用中的工作流程,同时也能掌握人体姿态估计的实现方法。这不仅有助于提升你的编程技能,还有助于你对计算机视觉领域的深入理解。
2025-08-02 17:34:01 7.18MB opencv OpenNI OpenPose
1
基于opencv的4A纸提取显示,会找到图片中最大的四边形并提取和变换为A4纸比例后输出,需要自行配置opencv
2025-07-31 21:54:27 6KB opencv
1
项目细节: 首先载入源图像,并进行尺寸预处理。 载入源图像image并作拷贝为org,将image按原始h,w的比例大小设置为高度为500的图像。 进行边缘检测和轮廓检测 在灰度化->边缘检测->轮廓检测后,将轮廓按轮廓的面积进行排序(注意这里默认是顺序的即从小到大,我们需要从大到小排序,所以reverse = True),取面积最大的前5个轮廓,并用多边形逼近(cv.approxPolyDP)的方法将轮廓近似出来,因为检测的轮廓有圆形有长矩形,我们需要的检测的目标轮廓是四边形(类似于矩形)。所以我们经过筛选得到我们需要的四边形的坐标。 坐标的透视变换 由多边形逼近轮廓的方法得到的坐标 是每个轮廓逆时钟方向的各个顶点的坐标,而我们想要顺时针方向的各个顶点的坐标,所以需要先对轮廓坐标重新排序。接着需要求出四边形轮廓的高和宽,来创建一个dst数组:该数组为[[0,0],[width-1,0],[width-1,height-1],[0,height-1] 。将四边形轮廓坐标和dst输入到cv.getPerspectiveTransform 函数里,得到透视变换的M矩阵。接着将用M矩阵对原图像做透视变化,其中得出的warped的大小为(width,height),这样透视变换就做完了。 简单点说:首先读取两个坐标数组,计算变换矩阵;然后根据变换矩阵对原图进行透视变换,并输出到目标画布, OCR识别 在OCR识别之前要对待识别的图像进行预处理,即灰度二值化,接着利用ocr指令来识别。 源码: import cv2 as cv import numpy as np import pytesseract def order_point(pts): rect = np.zeros((4, 2), dtype = "float32") s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts,axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def four_point_transfer(image,pts): rect = order_point(pts) (tl,tr,br,bl) = rect width1 = np.sqrt((tr[0]-tl[0])*(tr[0]-tl[0])+(tr[1]-tl[1])*(tr[1]-tl[1])) width2 = np.sqrt((br[0]-bl[0])*(br[0]-bl[0])+(br[1]-bl[1])*(br[1]-bl[1])) width = max(width1,width2) #python中有max函数和np.max函数,前者是比较两个数值的大小取最大值,后者是取出数组的最大值 height1 = np.sqrt((tr[0]-br[0])*(tr[0]-br[0])+(tr[1]-br[1])*(tr[1]-br[1])) height2 = np.sqrt((tl[0]-bl[0])*(tl[0]-bl[0])+(tl[1]-bl[1])*(tl[1]-bl[1])) height = max(height1,height2) dst = np.array([[0,0],[width-1,0],[width-1,height-1],[0,height-1]],dtype="float32") M = cv.getPerspectiveTransform(rect,dst) warped =cv.warpPerspective(image,M,(width,height)) return warped def resize(image,height=None): if height is None: return image else : h,w= image.shape[:2] #shape:h,w,channel image[h(row),w(col),channel] r = height/h width = int(w*r) #关于size函数参数的一般是(宽,高) image = cv.resize(image,(width,height),interpolation=cv.INTER_AREA) #还有resize(img,(宽,高)),即先列后行 return image #利用cv.bounding()得到x,y,width,height #其它情况一般都是先行后列(高,宽) #如shape得到参数,或者roi区域内部参数,建立新的Mat 都是先行后列 image = cv.imread("E:\opencv\picture\page.jpg") orig = image.copy() image = resize(image,height=500) ratio = orig.shape[0]/500 #边缘检测 image_gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) image_gray = cv.GaussianBlur(image_gray,(5,5),0) image_edge = cv.Canny(image_gray,75,200) #轮廓检测 image_contours = cv.findContours(image_edge.copy(),cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)[1] countours = sorted(image_contours,key=cv.contourArea,reverse=True)[:5] for c in countours: arc = cv.arcLength(c,closed=True) approx = cv.approxPolyDP(c,arc*0.02,True) if len(approx) == 4: screen_shot = approx break cv.drawContours(image,[screen_shot],-1,(0,0,255),2) warped =four_point_transfer(orig,screen_shot.reshape(4,2)*ratio) cv.imshow('warped_window',resize(warped,height=650)) warped =cv.cvtColor(warped,cv.COLOR_BGR2GRAY) scan = cv.threshold(warped,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)[1] cv.imwrite("E:/opencv/picture/scan.png",scan) cv.imshow("scan ",scan) scanstring = pytesseract.image_to_string(scan) print(scanstring) cv.waitKey(0) cv.destroyAllWindows() 在这个图像处理案例中,主要涉及了以下几个关键技术点: 1. 图像预处理: - **图像尺寸预处理**:通过`resize`函数调整图像尺寸,确保图像高度为500像素,保持原图像的宽高比例。这一步骤是为了统一处理不同大小的图像,使其适应后续的处理算法。 - **灰度化**:使用`cv.cvtColor`函数将彩色图像转换为灰度图像,简化图像特征,便于边缘检测和轮廓识别。 - **边缘检测**:采用Canny算法`cv.Canny`进行边缘检测,识别图像中的边界,帮助分离文字区域。 2. 轮廓检测与筛选: - **轮廓检测**:使用`cv.findContours`找出图像中的所有轮廓,`cv.RETR_LIST`确保获取所有独立的轮廓,`cv.CHAIN_APPROX_SIMPLE`压缩轮廓信息以节省内存。 - **轮廓排序与筛选**:按照轮廓面积进行降序排序,选择前五个最大的轮廓,这是因为文字区域通常比背景区域的面积更大。通过`cv.approxPolyDP`进行多边形逼近,去除非四边形轮廓,保留类似矩形的四边形轮廓,以精确选取文本区域。 3. 坐标变换与透视变换: - **坐标排序**:将轮廓坐标按照顺时针方向重新排序,这是为了满足`cv.getPerspectiveTransform`函数的需要,它需要按顺序的顶点坐标。 - **创建dst数组**:dst数组定义了目标四边形的四个顶点,即一个标准的矩形。 - **计算透视变换矩阵**:利用`cv.getPerspectiveTransform`得到将四边形轮廓坐标转换为dst矩形的透视变换矩阵`M`。 - **执行透视变换**:通过`cv.warpPerspective`函数,应用M矩阵对原图像进行透视变换,生成warped图像,使文字区域变为标准矩形。 4. OCR识别: - **预处理**:将warped图像转为灰度图像并进行二值化,使用`cv.threshold`和`cv.THRESH_BINARY|cv.THRESH_OTSU`进行自动阈值设定,提高文字识别的准确性。 - **OCR识别**:使用`pytesseract.image_to_string`对二值化后的图像进行文字识别,将图像转换为可读的文本字符串。 总结来说,这个案例展示了如何通过OpenCV库进行图像处理,包括尺寸调整、边缘检测、轮廓识别、坐标变换以及最终的OCR文字识别。这些步骤是图像分析和自动化文本提取的关键技术,常用于文档扫描、图像识别和信息提取等领域。
2025-07-30 21:48:04 21KB opencv python ocr
1
区域道具 Regionprops是Matlab提供的regionprops的C ++版本。 要求 Regionprops需要以下软件包才能构建: OpenCV(<3> > contours; std::vector hierarchy; cv::findContours (bin, contours, hierar
2025-07-30 13:45:59 124KB opencv c-plus-plus computer-vision
1
centos上傻瓜式安装。 解压后cd进入opencv文件夹后,sudo sh opencv.sh 。 跑完后会在opencv-4.7.0/build/bin/文件夹下出现opencv-470.jar,同时将最关键的libopencv_java470.so放进系统路径。 可以跑下附带的hello.java,看看是否编译成功: javac -cp opencv-4.7.0/build/bin/opencv-470.jar hello.java java -cp .:opencv-4.7.0/build/bin/opencv-470.jar hello
2025-07-30 11:06:17 91.53MB opencv 安装脚本
1