1. 提升树 boostring tree 是以决策树为基本学习器的提升方法 2. 对分类问题,提升树中的决策树是二叉决策树 3. 提升树模型可以表示为决策树为
2023-02-27 19:49:58 1.91MB html 决策树 回归 算法
1
第九章 树回归算法数据集
2022-11-23 13:39:45 14KB 数据集
1
本资源为机器学习实战的所有源代码。包含的内容有使用k-近邻算法改进约会网站的配对效果、使用k-近邻算法识别手写数字、使用决策树预测隐形眼镜类型、使用朴素贝叶斯过滤垃圾邮件、从疝气病症预测病马的死亡率、SVM手写识别问题回顾、利用AdaBoost元算法提高分类、线性回归预测鲍鱼的年龄、岭回归预测乐高玩具套装的价格、树回归、K-means对地理坐标进行聚类、Apriori算法发现毒蘑菇的相似特征、FP-growth算法从新闻网站点击流中挖掘、PCA对半导体制造数据降维、SVD基于协同过滤的推荐引擎、分布式SVM的Pegasos算法、用mrjob实现MapReduce版本的SVM。’
2022-04-30 13:06:16 12.72MB 机器学习 决策树 回归 支持向量机
优化预测 使用决策树回归模型改变模型参数以优化预测算法。
2022-03-15 16:09:14 91KB Python
1
Decision_Tree_Regression 使用Python进行决策树回归 执行代码的步骤: •首先下载决策树Regression.py文件和数据集。 并确保两个文件都在文件夹中。 •然后在任何Python编译器中打开python文件并运行代码。
2021-12-26 23:28:36 2KB Python
1
机器学习 原创文章每月最少两篇文章,后续最新文章会在首发,视频首发,大家可以加我进交流群,技术交流或提意见都可以,欢迎星级! 文章首发声明 文章在自己的个人网站首发,其他平台文章均属转发,如想获得最新更新进展,欢迎关注我的个人网站: ://cuijiahua.com/ 第二章:kNN(k-邻域算法) 文章 个人网站 CSDN 知乎 Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文) 代码 第三章:决策树(决策树) 文章 个人网站 CSDN 知乎 Python3《机器学习实战》学习笔记(二):方法树基础篇之让我们从相亲说起 Python3《机器学习实战》学习笔记(三):决策树实战篇之为自己配个隐形眼镜 代码 第四章:朴素贝叶斯 文章 个人网站 CSDN 知乎 Python3《机器学习实战》学习笔记(四):朴素贝叶斯基础篇之言论过滤器 Python3《机器学习实战》学习笔记(五):朴素贝叶斯实战篇之新浪新闻分类 代码 第五章:物流(Logistic回归) 文章 个人网站 CSDN 知乎 Python3《机器学习实战》学习笔记(六):Logistic回归基础篇之梯
2021-11-15 11:49:02 1.37MB python machine-learning svm regression
1
regression_tree.py
2021-10-20 22:04:56 14KB 树回归 python 机器学习
1
数据科学迷你项目 决策树回归,随机森林和多元线性回归的精度比较 风险资本家雇用您来预测一家初创公司的利润。 因此,您必须处理一个数据集,该数据集包含50个创业公司的详细信息,并根据某些功能预测新创业公司的利润。 根据您的决定和预测,是否应该投资特定的创业公司。 数据集包含以下字段:研究与发展趋势-研发管理支出总额-行政管理支出支出总额-营销市场支出总额-创业公司运营的州利润-获利启动 在应用机器学习算法之前,您必须执行以下任务:1)处理缺失值2)准备数据进行训练和测试3)应用决策树算法训练模型4)应用随机森林回归算法训练模型5)比较线性回归的精度。
2021-10-16 01:04:32 65KB JupyterNotebook
1
CART树回归附件代码
2021-10-07 20:14:24 2KB CART
1
理解DecisionTreeRegressor的原理,并编程实践。python语言编写。机器学习实验二。附有实验报告,
2021-08-18 15:20:03 103KB 机器学习 python
1