Dijkstra算法和图结构表示 Dijkstra算法是一种常用的图搜索算法,用于计算图中的一条最短路径。该算法的主要思想是从图的某个顶点出发,逐步扩展到其他顶点,直到找到目标顶点的最短路径。 在本节中,我们将详细讲述Dijkstra算法的实现过程,并提供C#语言的代码实现。 我们需要了解图的基本概念。图是一种非线性数据结构, 由顶点和边组成。图可以用来表示各种复杂关系,例如社交网络、交通网络、计算机网络等。 图的表示方法有多种,常见的有邻接矩阵方法、邻接表方法和邻接数组方法。其中,邻接矩阵方法将图表示为一个矩阵,其中每个元素表示两个顶点之间的边的存在性和权重。邻接表方法将图表示为一个表,其中每个顶点对应一个列表,列表中存储了该顶点的邻接顶点。邻接数组方法将图表示为一个数组,其中每个元素表示一个顶点的邻接顶点。 在Dijkstra算法中,我们使用邻接矩阵方法来表示图。该方法可以快速地计算图中的最短路径。 下面是Dijkstra算法的实现代码: ```csharp static public int[] Dijkstra(int[,] matrix, int start) { int n = matrix.GetUpperBound(0) + 1; // 顶点数目 = 最大下标 +1 if (start >= n || n < 2 || n != matrix.GetUpperBound(1) + 1) return null; bool[] final = new bool[n]; // 是否找到最短距离 int[] distance = new int[n]; // 当前最短距离 for (int i = 0; i < n; i++) { final[i] = false; distance[i] = matrix[start, i]; if (distance[i] == 0) distance[i] = int.MaxValue; } final[start] = true; distance[start] = 0; for (int i = 0; i < n; i++) { int pos = -1, min = int.MaxValue; // 寻找最小值 for (int j = 0; j < n; j++) { if (!final[j] && (pos < 0 || distance[j] < min)) { pos = j; min = distance[j]; } } if (pos < 0) break; final[pos] = true; // 修改距离 for (int j = 0; j < n; j++) { if (!final[j] && matrix[pos, j] != 0 && min + matrix[pos, j] < distance[j]) { distance[j] = min + matrix[pos, j]; } } } return distance; } ``` 该算法的主要思想是从图的某个顶点出发,逐步扩展到其他顶点,直到找到目标顶点的最短路径。在算法的实现过程中,我们使用了三个数组:final数组用于标记已经找到最短距离的顶点,distance数组用于存储当前最短距离,paths数组用于存储顶点的邻接顶点。 在算法的第一步,我们初始化final数组和distance数组。然后,我们使用循环来寻找图中的最短路径。在每次循环中,我们寻找当前最小的距离,并将其标记为已经找到最短距离的顶点。我们返回最短路径的结果。 Dijkstra算法是一种高效的图搜索算法,广泛应用于计算机科学和其他领域中。
2024-11-12 12:53:44 448KB 最短路径--Dijkstra算法
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-10-12 22:14:55 2.45MB matlab
1
【弗洛伊德算法】是图论中的一个经典算法,主要用于求解图中所有顶点对之间的最短路径。在数学建模中,这个算法常常被用来解决实际问题,例如交通网络规划、通信网络优化等,它能有效地找出两点间的最短路径,尤其在面对含有负权边的图时,其优势更为明显。本篇将详细介绍弗洛伊德算法的原理、实现过程以及在Matlab中的应用。 弗洛伊德算法的基本思想是动态规划,它通过逐步扩大搜索范围,逐步更新每对顶点之间的最短路径。算法的核心在于每次尝试通过中间节点来缩短两个顶点之间的距离,迭代直至所有可能的中间节点都被考虑过。具体步骤如下: 1. 初始化:根据给定的图(通常表示为邻接矩阵或邻接表),初始化每个顶点对的最短路径。对于无向图,对角线元素为0,表示顶点到自身的路径长度为0;非对角线元素为图中边的权重,表示两个顶点之间的直接路径长度。 2. 动态规划:对于每一对顶点i和j,遍历所有中间节点k,检查是否存在更短的路径,即d[i][j] > d[i][k] + d[k][j],如果存在,则更新d[i][j] = d[i][k] + d[k][j]。这里的d[i][j]表示顶点i到顶点j的最短路径长度。 3. 循环:重复步骤2,直到遍历完所有顶点,此时得到的d矩阵中的每个元素都表示对应顶点对的最短路径长度。 在Matlab中实现弗洛伊德算法,可以利用其强大的数组运算能力。创建邻接矩阵表示图,然后通过嵌套循环进行动态规划更新。以下是一个简化的Matlab代码示例: ```matlab function shortestPaths = floydWarshall(graph) n = size(graph, 1); % 获取图的顶点数量 shortestPaths = graph; % 初始化最短路径矩阵 for k = 1:n for i = 1:n for j = 1:n if shortestPaths(i, j) > shortestPaths(i, k) + shortestPaths(k, j) shortestPaths(i, j) = shortestPaths(i, k) + shortestPaths(k, j); end end end end end ``` 在实际的数学建模问题中,我们可能需要将这个算法与其他工具结合,如读取和处理数据、可视化结果等。例如,可以使用Matlab的`load`函数读取图的数据,`plot`函数绘制最短路径图,或者`disp`函数显示最短路径长度。 总结,弗洛伊德算法是解决图论中最短路径问题的有效方法,尤其适用于存在负权边的情况。在Matlab中,我们可以轻松实现并应用于各种数学建模场景,以解决实际问题。通过学习和掌握弗洛伊德算法,我们可以更好地理解和解决涉及网络优化的问题。在"清风数学建模"的19集中,你将深入了解到这一算法的详细解释和实例应用,这对于提升数学建模能力是非常有帮助的。
2024-10-12 21:24:49 174.35MB Matlab
1
Dijkstra算法python实现,基于邻接矩阵及优先队列 不仅能够求解其实节点到各个节点的最短路径长度,而且并确定各条最短路径上的节点信息
2024-08-23 11:13:41 5KB python Dijkstra 图与网络
1
【标题】"2017年研究生数学建模E题程序"揭示了当年数学建模竞赛中的一个实际问题,该问题涉及到了运用编程技术解决数学模型。数学建模是将现实问题转化为数学模型,通过计算和分析来找到最优解的过程。在本案例中,参赛者可能需要对某个具体情境下的问题进行分析,比如资源分配、网络优化或决策制定等。 【描述】中提到的"线性规划"是一种求解最优化问题的方法,它处理的是目标函数与约束条件都是线性的系统。线性规划广泛应用于生产计划、运输问题、资源配置等领域,通过寻找可行解中的最大值或最小值来确定最优策略。"证书规划"可能是指灵敏度分析或对偶理论,用于检验模型的稳定性并了解参数变化对解的影响。而"弗洛伊德算法"是解决图论中的"最短路径"问题的一种经典方法,适用于查找图中所有顶点之间的最短路径,尤其适用于稠密图。 文件名列表中的"data.m"可能包含了问题的数据输入,如变量、参数和初始条件。"Problem_1.m"到"Problem_4.m"分别对应于数学建模竞赛中的前四问,每问可能是一个独立的子问题,通过编写不同的MATLAB代码来解决。"floyd.m"则直接指向了弗洛伊德算法的实现,用于计算图中各节点间的最短路径。 在数学建模过程中,MATLAB作为一种强大的数值计算和编程环境,常被用来构建模型、求解问题和可视化结果。每个参赛团队会根据题目要求,利用这些工具和方法,结合实际背景,设计出合适的算法,最终形成完整的问题解决方案。 学习这部分内容有助于提升对数学建模的理解,掌握线性规划的求解技巧,以及如何应用图论算法解决实际问题。对于参加数学建模比赛的学生,不仅需要扎实的数学基础,还需要具备一定的编程能力,特别是用MATLAB进行数值计算和优化的能力。此外,了解如何将复杂问题转化为数学模型,并通过编程求解,也是现代科学研究和工程实践中的重要技能。
2024-07-09 10:07:07 6KB 数学建模 最短路径
1
预警车正常是在指定的区域线路上进行巡检,通过超声波进行避障,当需要到另外一个区域巡检或者到指定地点执行任务时,需要一个最优路径算法。如图7,作为医疗场所的剖面图,对占有面积的“小车区域”使用广度优先搜索的方法,从起点开始上下左右四方向搜索,就如同小车在图像中运动一样,搜索步长设置为车身的像素长度;即只移动小车的中心点,然后通过检查小车面积占据的方位内,是否有像素点为 0 来判断小车是否碰到障碍,将没有障碍位置的可行路径进行标记,同时记录到达该点的前一个点的坐标。如果判断小车行驶到终点则退出搜索,然后通过回溯得到从起点至终点的最短路径。将起点的灰度像素值设置为(255 + 127)/ 2 = 191,相对的,终点像素设置为(255 - 127)/ 2 = 64,这里的191、64没有额外的含义,只是用来表示区分,再通过BFS算法得到的路径,就是整个地图的最短路径
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-05-13 19:29:51 2.6MB matlab
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-15 16:07:52 2.46MB matlab
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-12 16:05:48 2.38MB matlab
1
图论算法包括:图的存储与遍历,最小生成树,最短路径,拓扑排序等
1