SLM Lab是PyTorch中的模块化深度强化学习框架 PyTorch 中的 SLM 实验室模块化深度强化学习框架。 文档:https://slm-lab.gitbook.io/slm-lab/ BeamRider Breakout KungFuMaster MsPacman Pong Qbert Seaquest Sp.Invaders Ant HalfCheetah Hopper Humanoid Inv.DoublePendulum InvertedPendulum Reacher Walker
2022-05-12 16:43:05 411KB 机器学习
1
PyRL-Pytorch中的强化学习框架 PyRL是深度强化学习研究的框架。 在PyTorch中实现了以下算法: (在制品) (WIP) (在制品) 该项目仍在积极开发中。 特征 模块化架构 在PyTorch中实现 可读代码 安装 git clone https://github.com/chaovven/pyrl.git pip3 install -r requirements.txt 我强烈建议使用conda环境进行实验。 其中一些示例使用MuJoCo物理模拟器。 有关设置MuJoCo的说明,请参见。 进行实验 示例1: TD3 python3 main.py --alg=td3 with env=InvertedPendulum-v2 默认参数存储在config/default.yaml ,其中所有实验都共享这些参数。 TD3的参数存储在文件config/algs
1
DeepRL 深度强化学习的框架。 特征: 算法分为模块 易于异步运行的算法 易于添加新算法 依存关系 python3.6 麻木 火炬 健身房 安装 git clone https://github.com/ppaanngggg/DeepRL pip install -e . 模块: 1.代理 DoubleDQNAgent:具有双Q学习功能的基础深度Q学习 通过深度强化学习进行人为控制 双重Q学习的深度强化学习 DDPGAgent:通过深度确定性策略梯度继续控制 具有深度强化学习的连续控制 PPOAgent:通过近端策略优化继续控制 近端策略优化算法 2.重播 重播:基本重播,从池中随机选择并删除最旧的一个 通过深度强化学习进行人为控制 ReservoirReplay:从池中随机选择一个,然后随机删除一个,用于NFSPAgent的策略网络 在不完全信息游戏中通过自我玩法进行深度强化
2022-03-11 11:06:16 38KB Python
1
ARL 框架的名字来源于 PAddlepaddle Reinfocement Learning,是一款基于百度 PaddlePaddle 打造的深度强化学习框架。PARL 与现有强化学习工具和平台相比,具有更高的可扩展性、可复现性和可复用性,支持大规模并行和稀疏特征,能够快速 对工业级应用案例的验证。 这个在 github 上是开源的,但是鉴于有些朋友工具受限下载很慢,所以特地搬运过来!
1
PAL是一种灵活高效的强化学习框架.具有可重复性的特点。我们给出的算法能够稳定地再现许多有影响的强化学习算法的结果。大规模的。支持数千CPU和多GPU的高性能并行训练的能力.可重复使用。存储库中提供的算法可以通过定义前向网络直接适应新任务,并自动建立训练机制。可扩展的。通过继承框架中的抽象类,快速构建新的算法。PARL is a flexible and high-efficient reinforcement learning framework.
2021-01-30 23:03:16 26.48MB PaddlePaddle 强化学习框架
1