弱监督定位调查:使用PyTorch中预先训练的CNN进行弱监督对象定位的各种算法的调查
2023-02-23 22:59:47 2.59MB visualization image localization deep-learning
1
针对获得训练数据集代价高昂问题,提出了一种用于图像显著性检测的弱监督新方法,在训练网络模型时仅使用图像级标签。方法分为两个阶段,在第一阶段,根据图像级标签训练分类模型,获得前景推断图;在第二阶段,对原图像进行超像素块处理,并与阶段一得到的前景推断图进行融合,从而细化显著对象边界。算法使用了现有的大型训练集和图像级标签,未使用像素级标签,从而减少了注释的工作量。在四个公共基准数据集上的实验结果表明,性能明显优于无监督的模型,与全监督模型相比也具有一定的优越性。
2022-12-08 14:49:26 1.06MB 深度学习 弱监督 显著性检测
1
我们做深度学习中,到采用的训练方案是全监督的方式,这种全监督的方式,在基本的分类任务当中数据打标签的难度还好,但是在一些更多复杂的深度学习任务中,label的获取就有些困难了。 比如在图像分割领域当中,像素级的标签获取起来费事费力(labelme用起来还挺累的),有没有这么一种算法可以通过分类的标签衍生出像素级的标签,答案是有的。
2022-09-20 23:38:01 1KB 弱监督 图像分割 人工智能
1
CVPR2022 - 弱监督多标签分类中的损失问题.doc
2022-07-12 18:05:48 438KB 技术资料
弱监督的CNN分割的正则损失(rloss) (Caffe和Pytorch) 为了使用弱监督(例如,涂鸦)训练CNN进行语义分割,我们提出了规则化的损失框架。 损失包括两个部分,即涂抹时的部分交叉熵(pCE)损失和正则化损失(例如DenseCRF)。 如果您在此处使用代码,请引用以下论文。 “关于弱监督的CNN分割的规则损失” ,( ,( ,( ,( ) 在2018年9月于德国慕尼黑举行的欧洲计算机视觉会议(ECCV)上。 DenseCRF丢失 要包括CNN的DenseCRF损失,请添加以下损失层。 它有两个底部斑点,第一个是RGB图像,第二个是软分割分布。 我们需要为XY(bi_xy_std)和RGB(bi_rgb_std)指定高斯内核的带宽。 layer { bottom: "image" bottom: "segmentation" propagate_
2022-05-06 00:09:41 8.35MB JupyterNotebook
1
弱监督学习的精确3D人脸重建:从单个图像到图像集 回购协议Pytorch版本。 此存储库仅包含重建部分,因此您可以使用库来训练网络。 而预训练模式也从这个。 特征 神经网络 我使用mtcnn裁剪原始图像并检测5个地标。 的大多数代码来自 。 pytorc3d 在此,我使用渲染重建的图像。 估计内在参数 在原点回购( ),则渲染的图像是不一样的,因为输入图像preprocess 。 因此,我添加了estimate_intrinsic以获取内部参数。 例子: 这里有些例子: 原始图片 裁剪图像 渲染图像 文件架构 ├─BFM same as Deep3DFaceReconstruction ├─dataset storing the corpped images │ └─Vladimir_Putin ├─examples
2022-04-08 15:20:03 134KB Python
1
WSDDN PyTorch 使用最新版本的PyTorch实施Weakly Supervised Deep Detection Networks 。 Bilen, H., & Vedaldi, A. (2016). Weakly supervised deep detection networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2846-2854). 实施差异 亚当优化器(而不是SGD) 未添加空间正则化器 实验 基于VGG16的模型最接近EB + Box Sc. L型案例,报告为30.4 mAP 基于AlexNet的模型最接近EB + Box Sc. 模型S的案例,报告为33.4 mAP 将VGG16用作基本模型时的结果 航空 自行车
2022-03-24 19:44:16 14KB computer-vision deep-learning pytorch pascal-voc
1
蛤 整个幻灯片图像上的数据高效和弱监督计算病理学。 自然生物医学工程 | | | TL; DR: CLAM是一种高通量且可解释的方法,可使用幻灯片级别的标签对数据进行有效的整个幻灯片图像(WSI)分类,而无需任何ROI提取或补丁级别的注释,并且能够处理多类子类型化问题。 经过训练的模型在三个不同的WSI数据集上进行了测试,可适应WSI切除和活检以及智能手机显微镜图像(显微照片)的独立测试队列。 CLAM:基于深度学习的管道,可进行高效数据和无监督的全幻灯片级别分析 ••••••••预打印•演示•引用 CLAM如何工作? 聚类约束的注意力多实例学习(CLAM)是一种基于深度学习的弱监督方法,该方法使用基于注意力的学习来自动识别具有较高诊断价值的子区域,以便准确地对整个幻灯片进行分类,同时还利用实例代表区域上的高级别聚类,以约束和完善特征空间。 :copyright: Mahmood Lab-此代码在GP
1
这是VLDB 2018的best paper,强烈推荐,在快速训练集方面非常有用!
1
迁移学习从根本上改变了自然语言处理(NLP)的处理范式。许多最先进的模型首先在大型文本语料库上进行预先训练,然后在下游任务上进行微调。
2022-02-12 14:24:26 4.63MB 弱监督 预训练语言模型
1