### 单端反激式开关电源设计步骤详解 反激式开关电源因其结构简单、成本低廉及适用范围广泛等特点,在小功率电源系统中被广泛应用。本文将基于给定的文件内容,详细介绍单端反激式开关电源的设计步骤,并对每个步骤进行深入解析。 #### 一、电源输出功率 首先需确定电源的输出功率 \( P_O \),这一步骤至关重要,因为输出功率直接影响到后续设计中的元件选择。公式如下: \[ P_O = \sum_{i} (V_{OUT_i} \times I_{OUT_i} + V_{D_i}) \] 其中,\( V_{D_i} \) 为第 i 路输出整流二极管的正向导通压降。通常情况下,可以选择肖特基二极管或超快恢复二极管。如果采用肖特基二极管,则 \( V_{D_i} \) 大约为 0.4V;如果是超快恢复二极管,则 \( V_{D_i} \) 大约为 0.6V。 #### 二、输入端电容 输入端电容 \( C_{in} \) 的选择也非常重要,它直接影响到电源的稳定性。一般来说,其最小值应满足以下条件: \[ C_{in} \geq (2 \sim 3) \times \frac{P_O}{f_L} \] 这里,\( f_L \) 是交流输入电压的频率。 #### 三、输入最小直流电压 接下来需要确定输入的最小直流电压 \( U_{dcmin} \),该值可以通过以下公式计算得出: \[ U_{dcmin} = \sqrt{2} \times U_{acmin} - \frac{2 \times P_O \times t_C}{f_L \times C_{in} \times \eta} \] 其中,\( t_C \) 为整流桥导通时间,通常取值为 3.2ms;\( \eta \) 表示电源效率。 #### 四、输入最大直流电压 输入的最大直流电压 \( U_{dcmax} \) 直接由交流输入最大电压 \( U_{acmax} \) 确定: \[ U_{dcmax} = \sqrt{2} \times U_{acmax} \] #### 五、最大占空比 在选择PWM控制芯片时,为了确保系统的稳定性,最大占空比 \( D_{max} \) 通常不超过 0.5。 #### 六、反激电压 反激电压 \( U_{OR} \) 可以通过以下公式计算: \[ U_{OR} = U_{dcmin} + U_{ds} - D_{max} \times (U_{dcmin} + U_{ds}) \] 这里,\( U_{ds} \) 为开关管饱和导通压降,一般取值为 10V。 #### 七、开关管漏源最低耐压 开关管的漏源最低耐压 \( U_{mos-min} \) 可以通过以下经验公式估算: \[ U_{mos-min} = 1.4 \times U_{dcmax} + 1.5 \times U_{OR} \] #### 八、工作模式与电流纹波峰值比 根据实际应用需求,可以设定变换器的工作模式为电流连续模式(CCM)或电流断续模式(DCM)。不同的工作模式对应不同的电流纹波峰值比 \( K_{RP} \): - CCM 模式:\( K_{RP} < 1 \) - DCM 模式:\( K_{RP} = 1 \) #### 九、确定开关频率 开关频率 \( f \) 的选择需要考虑所选芯片的支持能力和开关管的开关能力。通常,开关频率的选择会影响到效率和成本之间的权衡。 #### 十、选择磁芯 磁芯的选择对于整个电源的性能有着至关重要的影响。面积乘积法是一种常用的计算方法,可以根据不同的工作模式计算出面积乘积 \( A_p \): - CCM 模式: \[ A_p \geq \frac{1.5}{1-D_{min}} \times \frac{P_O}{f \times B_{m} \times J_k \times \eta} \] - DCM 模式: \[ A_p \geq \frac{1.5}{D_{max}} \times \frac{P_O}{f \times B_{m} \times J_k \times \eta} \] 这里,\( D_{min} \) 为最小占空比;\( B_{m} \) 为最大磁通密度;\( J_k \) 为电流密度。 #### 十一、确定电流平均值 原边电流平均值 \( I_{avgp} \) 的计算公式如下: \[ I_{avgp} = \frac{P_O}{U_{dcmax} \times D_{max} \times \eta} \] #### 十二、确定原边峰值电流 原边峰值电流 \( I_{pkp} \) 的计算公式为: \[ I_{pkp} = I_{avgp} \times \left(2 + \frac{1}{K_{RP}}\right) \] #### 十三、确定开关管能承受最小电流 开关管能承受的最小电流 \( I_{mos-min} \) 计算公式为: \[ I_{mos-min} = 1.5 \times I_{pkp} \] #### 十四、确定原边有效值电流 原边有效值电流 \( I_{rmsp} \) 的计算公式如下: \[ I_{rmsp} = I_{pkp} \times \sqrt{\left(\frac{1}{3} + \frac{1}{K_{RP}^2}\right)} \] #### 十五、确定初级电感量 初级电感量 \( L_p \) 的计算公式为: \[ L_p = \frac{U_{dcmax} \times D_{max}}{f \times I_{pkp} \times K_{RP}} \] #### 十六、确定最大磁通密度 最大磁通密度 \( B_m \) 一般取值范围为 0.2T~0.3T,以避免磁芯饱和。 #### 十七、原边匝数 原边匝数 \( N_p \) 的计算公式为: \[ N_p = \frac{1000 \times L_p}{I_{pkp} \times A_e \times B_m} \] 其中,\( A_e \) 为磁芯的有效截面积。 #### 十八、副边匝数 副边匝数 \( N_{si} \) 的计算公式为: \[ N_{si} = N_p \times \frac{V_{OUT_i} + V_{D_i}}{U_{OR}} \] #### 十九、偏置绕组匝数 偏置绕组匝数 \( N_B \) 的计算公式为: \[ N_B = N_p \times \frac{V_B}{U_{OR}} \] 这里,\( V_B \) 为偏置电压。 通过以上步骤,我们可以较为完整地完成单端反激式开关电源的设计。每一步都紧密关联,需要综合考虑电源的各项指标和实际应用需求来做出最佳选择。
2025-09-06 16:50:50 259KB 开关电源 设计步骤
1
反激式开关电源设计方案:高效稳定输出12V 6A电源,附完整原理图、PCB工程文件和BOM表,即刻投入生产使用,反激式开关电源设计方案:详细解析12V 6A输出原理图,附PCB工程文件和BOM表,直接使用指南,反激式开关电源设计方案,12V6A输出,有完整原理图,PCB工程文件,BOM表,可直接使用。 ,反激式开关电源设计; 12V6A输出; 完整原理图; PCB工程文件; BOM表; 可直接使用;,反激式电源设计,12V6A高效输出,完整文件及原理图供现成使用 在当前电子工程领域,反激式开关电源设计作为实现高效稳定能量转换的一种关键技术,始终扮演着重要角色。它在提供稳定电压输出的同时,具备高效能、低功耗的特点,对于电子设备的正常运行至关重要。具体来说,一款针对12V 6A输出设计的反激式开关电源,不仅要求具备高度的稳定性和可靠性,还要求设计者必须具备深厚的电源管理知识和实践经验。 本设计方案通过提供完整的原理图、PCB工程文件和BOM表,使得设计者能够迅速理解设计方案的每一个细节,并且可以直接投入生产使用。完整的原理图是设计的基础,它详细描述了电路的工作流程和各组件之间的关系。原理图对于初学者来说,是一个了解电源工作原理、深入学习电源设计的重要工具。同时,对于有经验的工程师来说,原理图同样是设计过程中的关键参考,能够帮助他们检验电路设计的正确性,并进一步优化电源的性能。 PCB工程文件则是根据原理图设计的电路板文件,它包含了电路板的设计规格、元件布局和走线信息。PCB文件是将电源设计从理论转化为实体产品的核心资料。在制作PCB时,需要考虑诸多因素,如元件的热分布、电磁兼容性、信号完整性等,只有通过精确的PCB设计,才能确保电源板在实际运行中的性能稳定。 BOM(物料清单)表则详细列出了制作该电源所需要的所有电子元件和材料,包括元件的型号、规格、数量以及来源等。BOM表是生产管理中的重要文件,它确保生产过程中的采购、仓储、物流等环节能够准确无误地进行。一个详尽准确的BOM表,对于控制生产成本、提高生产效率具有重要作用。 本设计方案的特点在于其实用性和综合性。文档中不仅包含了上述各种重要文件,还提供了一份详细的使用指南,指导用户如何根据这些文件进行生产。此外,设计文件在内容上涵盖了从理论到实践的各个方面,使得整个设计方案不仅是一个理论模型,而是一个可以立即操作的生产工具。 反激式开关电源设计方案的实战解析部分,从设计到实践的每个步骤都进行了深入的分析。这种从理论到实践的深度解析,对于电源设计者来说是宝贵的学习资源,它不仅能够帮助设计者掌握反激式开关电源的设计技巧,还能够提供实战经验,帮助他们更好地解决在实际应用中可能遇到的问题。 反激式开关电源设计方案为电子工程师提供了一套完整的工具和方法,使其能够在最小的资源投入下,实现12V 6A高效稳定输出的电源设计。通过这些详细的设计文件和解析,设计者不仅能够快速掌握电源设计的核心技术,而且能够直接应用于生产实践,大大缩短了研发周期,降低了产品开发的风险。对于那些希望建立在大数据背景下对电源系统进行优化和管理的工程师来说,本设计方案同样提供了极具价值的参考和借鉴。
2025-08-22 20:36:10 10.64MB
1
家用空调控制器电源采用开关电源方案是空调产品发展的最终趋势。NCP1014单片开关电源方案具有性能稳定可靠、使用灵活、电路简单、成本低廉等优点,在家用空调控制电源中具有相当大的应用市场。如有需要,利用NCP1014也可设计多路输出式开关电源,其要点是电源总的输出功率等于各路输出功率之和。 空调控制器的电源设计是空调系统中的关键环节,随着技术的发展,开关电源方案逐渐成为家用空调控制器的首选。本文主要探讨了采用NCP1014单片开关电源方案的优势及其在空调控制器中的应用。 NCP1014单片开关电源方案因其性能稳定、使用灵活、电路简洁和成本低廉等特性,在家用空调控制器市场上具有广泛的应用前景。这种方案不仅能够提供稳定的电源输出,还能适应各种输入电压变化,提高了空调控制器的可靠性。对于家用空调来说,传统低频铁芯变压器的线性电源方案存在诸多问题,例如输出电压受市电波动影响、继电器工作不稳定、热损耗大以及使用寿命缩短等。这些问题在NCP1014方案中得到了有效解决。 NCP1014单片开关电源的特性包括: 1. 可以通过最少的外围元件构建隔离式、高效率的开关电源,其电压调整率和负载调整率优于低频线性电源,同时提高了转换效率。 2. 动态自供电技术允许在功率小于5W时省去辅助电源绕组,简化了高频变压器的设计。 3. 内置700伏高压MOS功率开关管,可适应宽电压输入范围,并可在连续模式(CCM)和不连续模式(DCM)下工作。 4. 超低功耗,空载时整机功耗低于100毫瓦,采用外部偏置供电时可实现低峰值电流的频率跳变模式,减少噪声。 5. 电流模式控制提供了快速动态负载响应,内置软启动电路确保开机时无电流和电压过冲。 6. 完善的保护功能,包括短路自动重启动、开环故障检测、过压锁定、限流保护和过热保护,简化了外部电路设计。 NCP1014在空调控制器中的典型应用是采用反激式拓扑结构的10瓦隔离式电源,设计时需要考虑高频功率开关变压器、初级输入滤波电容等关键元件的参数。例如,开关变压器的电感量应根据工作模式选择,而初级滤波电容C1和C2则用于平滑输入电压,消除100赫兹纹波。 NCP1014单片开关电源方案为家用空调控制器提供了高效、可靠的电源设计方案,克服了传统线性电源的不足,有利于提升空调产品的整体性能和使用寿命,从而在空调制造行业中得到广泛应用。
2025-08-10 15:46:42 137KB 开关|稳压
1
在现代电子设计领域中,开关电源作为一种高效、小巧且灵活的电源解决方案,占据了重要的地位。开关电源能够将一个电压转换为另一个不同的电压值,广泛应用于各种电子设备中。本文档提供的资源是关于220V交流电转换为24V、12V以及5V直流电的开关电源设计资料,包括了详细的设计原理图、PCB布局图以及物料清单(BOM)。 我们来探讨开关电源的基本工作原理。开关电源通过利用高频开关技术,快速地在导通和截止之间切换,从而实现能量的转换和调节。这一过程通常包括以下几个关键部分:输入滤波器、整流电路、开关元件、变压器、输出整流和滤波电路以及反馈控制电路。 在220V转24V/12V/5V的开关电源设计中,首先通过整流电路将交流电转换为脉冲直流电。接着,开关元件(如MOSFET或IGBT)开始工作,通过高速的开关动作使得变压器两侧的电压发生变换。变压器是开关电源中非常关键的组件,它不仅提供电气隔离,还能够根据所需的输出电压和电流来设计不同比例的匝数比。在变压器的次级侧,脉冲电流经过整流和滤波处理后输出稳定的直流电压。反馈控制电路根据输出电压的反馈值来调整开关元件的工作频率或占空比,以保证输出电压的稳定。 在设计开关电源的过程中,工程师需要考虑多个因素,如效率、稳压精度、输出电流、电源的尺寸和重量以及散热问题等。为此,本文档中提供的原理图和PCB布局图就显得尤为重要。原理图揭示了电路的工作原理和各个元件之间的电气连接关系;而PCB布局图则提供了电路板的设计细节,包括元件的布局和走线。这些信息对于制作实际的电路板、调试以及后期的维护都有着不可替代的作用。物料清单(BOM)详细列出了构成电源的所有元器件,包括它们的型号、规格以及数量,是采购元件和组装电源的必要依据。 220V转24V/12V/5V开关电源的设计并不简单,它要求工程师不仅要精通电子电路的设计,还要能够考虑到电路的实际应用环境和条件。此外,电源设计还需要符合相关的安全标准和电磁兼容性要求,以确保其在各种环境下的安全和稳定运行。 在制作和使用开关电源时,还应特别注意一些实际问题,比如如何防止过载、过热、短路等问题,以及如何保护电路免受冲击电流的损害。这些问题的解决方案通常需要在电路设计阶段就考虑进去,比如增加保险丝、热敏电阻、稳压二极管等元件。 开关电源的设计是一个复杂而精细的过程,需要多方面的知识和技能。本文档提供的220V转24V/12V/5V开关电源设计资料对于学习和掌握开关电源的设计具有很高的参考价值。通过原理图和PCB布局图的学习,可以帮助电子工程师更好地理解开关电源的工作原理,并在实际工作中设计出高效、稳定且可靠的电源产品。
2025-08-04 14:43:01 18.95MB 开关电源
1
反激式开关电源设计方案:高效稳定输出12V 6A,全套原理图与工程文件,BOM表齐全,即建即用,反激式开关电源设计方案,12V6A输出,有完整原理图,PCB工程文件,BOM表,可直接使用。 ,反激式开关电源设计方案; 12V6A输出; 完整原理图; PCB工程文件; BOM表; 可直接使用。,反激式电源设计,12V6A高效输出,完整文件及原理图供现成使用 在当前技术迅速发展的时代,电子设备的电源设计不断趋向于高效率、小型化以及稳定性。其中,反激式开关电源因其结构简单、成本低廉、应用广泛等特点,在众多电源设计中占据着重要的地位。反激式开关电源设计方案通常包含了一系列设计文件,以确保电源能够稳定高效地工作,输出所需规格的电压和电流。本次讨论的反激式开关电源设计方案,特别针对12V 6A的输出要求,提供了全套的工程文件和材料清单(BOM表),使得设计者能够快速搭建和使用。 在反激式开关电源设计中,原理图是理解整个电源工作原理的核心文件,它详细展示了电路的所有组成部分及其相互之间的连接关系。完整的原理图可以让设计者清晰地了解电源的结构,并对电路进行必要的调整和优化。同时,PCB工程文件是实现电路板设计的必要条件,它包含了电路板的设计细节,包括元件布局、走线等信息,对于保证电源性能和可靠性至关重要。 BOM表即物料清单,详细列出了构成整个开关电源的所有物料信息,包括元件的类型、数量、规格参数等,是采购元件和组装电源不可或缺的文件。一个完备的BOM表能够大大简化物料采购和组装流程,提高生产效率。 此外,反激式开关电源的设计还需要考虑电源的转换效率、稳定性以及保护机制等多个方面。转换效率直接关系到电源的工作效能和发热问题,高效设计可以降低能源损耗和设备温度。稳定性则关乎电源输出电压和电流的稳定性,这需要通过合理的电路设计和元件选型来保证。而良好的保护机制可以避免电源在异常情况下对电子设备造成损害。 在电子工程实践中,反激式开关电源方案的设计往往不是一蹴而就的,需要经过多次的模拟仿真、原型测试和优化调整。而一套完整的、即建即用的方案可以大大缩短研发周期,降低开发成本,尤其对于那些追求快速上市的电子产品而言,具有很高的实用价值。 反激式开关电源设计方案涉及到电路设计的方方面面,包括电路原理、PCB布局、元件选型和测试验证等。提供一套高效稳定输出12V 6A的反激式开关电源设计方案,不仅需要确保电源的性能满足设计要求,还应便于使用者进行学习和应用。通过详细的原理图、PCB工程文件以及完备的BOM表,能够为电源设计人员提供极大的便利,加速产品的研发和应用进程。
2025-05-29 18:06:00 2.61MB rpc
1
《12V5A开关电源设计详解》 开关电源是一种高效能、低损耗的电源转换设备,广泛应用于各种电子设备中。本设计聚焦于12V5A的开关电源,涵盖了从理论到实践的全过程,包括原理图设计、PCB布局以及效率测试等多个方面。 一、基本原理 12V5A开关电源设计的核心在于高频开关技术,通过控制开关器件的通断,使输入电源的能量在变压器或电感等储能元件中快速切换,从而改变电压等级。这种设计相比传统线性电源,具有更高的转换效率和更小的体积。 二、电路原理 在12V5A开关电源的电路设计中,主要包含以下几个关键部分: 1. **功率开关**:通常采用MOSFET或IGBT等高速开关元件,负责电源的开闭操作。 2. **控制器**:如PWM(脉宽调制)控制器,用于产生驱动信号,控制功率开关的工作状态。 3. **反馈网络**:检测输出电压并提供反馈,确保输出稳定。 4. **滤波器**:包括输入和输出滤波器,消除高频噪声,提高电源质量。 5. **保护电路**:过压、过流、短路等保护措施,确保电源安全运行。 三、PCB设计 PCB(Printed Circuit Board)布局是开关电源设计中的关键步骤,它直接影响到电源的性能和稳定性。文件"PCB方案验证板 12V5A 60W.PcbDoc"和"SchDoc"包含了完整的PCB布局和电路原理图,设计者应遵循以下原则: 1. **信号完整性**:合理布线,避免信号间的干扰。 2. **热管理**:确保关键发热元件的散热路径畅通,降低温升。 3. **电源和地的布线**:大电流路径应尽量宽,电源地平面要连续,提高电源稳定性。 四、效率测试 效率测试是评估开关电源性能的重要指标。文件"测试 AC100V 效率测试 81%.JPG"和"测试 AC240V 效率测试 83.6%.JPG"展示了在不同输入电压下的效率测试结果,表明该电源在不同工作条件下都能保持较高的转换效率,符合预期设计目标。 五、产品实物 "产品正面.JPG"和"产品背面.JPG"展示了开关电源的实物外观,包括接口布局、散热设计等实际应用考虑,体现了设计的实用性和可靠性。 六、物料清单(BOM) 12V5A BOM.xlsx文件提供了所有组件的详细清单,包括型号、数量、供应商等信息,为生产和采购提供了依据。 总结,12V5A开关电源设计是一个综合了电力电子、电磁兼容、热设计等多个领域的复杂工程,通过合理的原理图设计、高效的PCB布局以及严谨的效率测试,最终实现了高效稳定的电源转换。这份设计资料为理解和实践开关电源设计提供了宝贵的参考。
2025-05-26 23:25:16 8.97MB
1
基于Matlab的5V反激式开关电源仿真设计:电流电压双闭环PID控制及结构细节详解,基于Matlab simulink的5V反激式开关电源设计,双闭环PID控制下的仿真研究及详细计算分析,5V2A反激式开关电源仿真 基于Matlab simulin仿真软件设计,采用电流电压双闭环反馈PID控制方式,输出电压恒定5V 输入85-265AC 结构:单向桥式?反激变器 详细的反激Mathcad详细计算,包含mos,二极管选型,变压器设计计算,钳位电路计算 ,5V2A反激式开关电源仿真;Matlab simulink仿真软件;电流电压双闭环反馈PID控制;恒定5V输出电压;85-265AC输入;单向桥式反激变换器;mos选型;二极管选型;变压器设计计算;钳位电路计算,基于Matlab仿真的5V2A反激式开关电源设计:电流电压双闭环PID控制,详细Mathcad计算解析
2025-04-10 15:18:08 1.9MB kind
1
摘 要:本文设计了一种基于UC5845控制器的反激式开关电源电路,给出了电路及参数设计与选择过程。   实践证明,基于UC3845的反激式开关电源具有输入电压范围宽、输出电压精度高、负载的调整效率高等特点。   0 引言   反激式开关电源以其结构简单、元器件少等优点在自动控制及智能仪表的电源中得到广泛的应用。开关电源的调节部分通常采用脉宽调制(PWM)技术,即在主变换器周期不变的情况下,根据输入电压或负载的变化来调节功率MOSFET管导通的占空比,从而使输出电压稳定。脉宽调制的方法很多,本文中所介绍的是一种高性能的固定频率电流型脉宽集成控制芯片UC3845。该芯片是专为离线的直流至直流
2025-03-30 17:13:53 311KB 电源技术
1
杜佐兵_开关电源设计应用与电磁兼容设计-实践中开关电源设计与EMC
2024-06-23 17:34:51 5.99MB 开关电源 设计应用 电磁兼容设计
1
开关电源设计资料大全包括多个DCDC电源硬件设计原理图及电源文档资料共180个文件,可以做为你的学习设计参考. 1000W开关电源SCH原理图.rar 1200W开关电源设计原理图、PCB图.zip 12V-5A反激式开关电源实例.pdf 12V-5V开关电源电路及设计分析(含仿真 12V、15W开关电源设计原理图PCB设计 12V开关电源制作_适合初学者制作的TOP22X系列开关电源.doc 12V开关电源改5V.docx 200w开关电源__功率级电路设计总结.pdf 220VAC输入5路输出3.3V5V12V18V30V开关电源详细设计.pdf 24V,350W开关电源 30kHz高频开关电源变压器的设计.doc 30V30A开关电源电路图.pdf 3500W与6000W开关电源解析.docx 36V开关电源SCH原理图.rar 48V 50A开关电源整流模块主电路设计.pdf 48V25A直流高频开关电源设计_1.doc 48V三轮车充电器.pdf 4~16V开关稳压电源详细设计.pdf 500W音响专用开关电源电路设计制作.pdf 50W AC-DC电源适配器电路+PCB源文件+BOM 50W开关电源.pdf AC-DC 5V1A专用小功率开关电源DK106(PCB源文件+变压器参数+BOM清单) Buck型开关电源_芮法成.pdf DC24V仪用开关电源的原理和维修.doc DK106 5V1A电源适配器IC方案52x32元件清单.pdf LED反激式电源之UC3842恒流恒压模块调试成功,附PCB工程文件 lm2596开关电源调压器设计资料.pdf LM311DR 电压可调电源模块,附PCB工程文件 LT3514三路降压型开关稳压器设计(原理图+PCB源文件) MP1470 DC-DC电源模块 Q-120W开关电源技术参数.pdf S8JX开关电源3550100150-W型.pdf SG3525A开关电源设计.pdf TI开关电源设计30例.pdf tl494可调开关电源设计资料全集.zip UC3842开关电源设计技巧.pdf uc3842电路图.docx UC3842设计开关电源的几个技巧.doc UC3843控制多路输出开关电源设计与实现.pdf [直流开关电源的软开关技术].阮新波&严仰光.扫描版.pdf 《开关电源中磁性元器件》-赵修科主编.pdf 《开关电源常规测试项目》.pdf 《开关电源设计与制作》教材 120823.doc 一步一步精通单端反激式开关电源设计.pdf 低待机功耗开关电源充电器的设计.pdf 全国电子设计大赛--开关电源.rar 全国电子设计大赛——开关稳压电源报告.doc 全桥DC-DC开关电源(SMPS)设计(原理图、PCB源文件、源代码等) 六大问题帮你搞定共模抑制比.docx 几种常见的开关电源工作原理.docx 反激式、正激式、推挽式、半桥式、全桥式开关电源的优点与缺点.pdf 反激式开关电源原理.docx 反激式开关电源变压器的设计(宝典).pdf 各类电源技术原理资料.rar 基于iW1810-00的5V 600mA交直流开关电源设计 基于LM2576的开关电源设计(原理图、PCB源文件) 基于TPS54202的DCDC电源模块设计 备战全国电赛,2015年全国电赛电源类——双向DC变换电源设计分享 如何为开关电源选择合适的电感.docx 实用开关电源技术.pdf 常用开关电源芯片大全.pdf 常见正反激开关电源拓扑结构.doc 开关电源AC-DC解决方案,直流输出DC 5V(2.4A),24V(0.5A) 开关电源PCB布局布线教材.rar 开关电源中的有源功率因数校正技术.pdf 开关电源仿真.doc 开关电源功率变换器拓扑与设计.pdf 开关电源原理与设计-张占松(pdf完整版).pdf 开关电源原理图精讲.pdf 开关电源反激和正激的区分.pdf 开关电源变压器计算方法.pdf 开关电源各种拓扑集锦.pdf 开关电源各部电路祥解.pdf 开关电源各部电路详解.pdf 开关电源基础知识TI bookmark.pdf 开关电源技术的十个关注点.docx 开关电源振铃现象控制的方法.pdf 开关电源毕业论文合集 开关电源毕业设计.doc 开关电源电路图.pdf 开关电源的一点总结.docx 开关电源的尖峰干扰及其抑制.doc 开关电源的抗干扰问题.doc 开关电源设计中PCB板各环节需要注意的问题.docx 开关电源设计指南.rar 开关电源设计笔记-几分钟搞定一款LED电源.pdf 开关电源设计经典培训.pdf 开关电源辐射骚扰测试.pdf 开关电源适配器电路+PCB源文件+BOM清单等 开关电源(好书).pdf 开关稳压电源(电子设计竞赛 E题)(内附论文和PC
2024-05-24 14:40:08 370.11MB