機器學習中的不平衡分類方法

上传者: longlifeshow | 上传时间: 2019-12-21 18:51:31 | 文件大小: 28.88MB | 文件类型: pdf
書中机器学习 (特别是在分类)中一个令人惊讶的常见问题,出现于每个类别的观测样本不成比例的数据集中。普通的准确率不再能够可靠地度量性能,这使得模型训练变得更加困难。不平衡类别使得“准确率”失去意义。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明