在嵌入式系统开发领域,STM32F1系列微控制器因其高性能和丰富功能被广泛应用于各种产品设计中。本实验聚焦于如何使用STM32F1系列中的FSMC(Flexible Static Memory Controller)外设,来驱动LCD屏幕,以实现图形显示。实验的目标芯片包括ST7796S、ST7789V和ILI9341,这些均为常用的液晶显示控制器。本实验的主要内容涵盖显示测试和刷屏帧率计算,并通过FSMC+DMA(Direct Memory Access)方式对比刷屏速度,评估不同驱动方式的性能。 FSMC是一种灵活的静态存储控制器,它允许STM32F1系列微控制器直接与外部存储设备进行通信。FSMC支持多种类型的存储器,如SRAM、PSRAM、NOR Flash和LCD显示器等。在本实验中,FSMC被用来作为与LCD屏幕通信的接口,它负责发送控制命令和图像数据到LCD屏幕。 ST7796S、ST7789V和ILI9341都是常用的TFT液晶显示控制器,它们具有相似的接口和工作原理,因此可以在本实验中兼容使用。ST7796S和ST7789V是专为小尺寸屏幕设计的控制器,常用于便携设备;而ILI9341则支持更大尺寸的显示屏,具有更高的分辨率和颜色显示能力。将这些控制器作为实验对象,可以让我们学习如何通过FSMC来驱动不同尺寸和分辨率的屏幕。 实验中,显示测试是不可或缺的一个环节,它涉及到基本图形的显示,如线条、矩形、圆和基本字符等。这不仅帮助验证FSMC与LCD之间的通信是否正常,也为后续的帧率测试提供了测试图案。 帧率测试是在显示测试的基础上进行的,目的是计算屏幕刷新的速度。帧率通常以每秒刷新的帧数(FPS)来衡量,是衡量显示屏性能的重要指标之一。在此实验中,通过FSMC驱动LCD屏幕,测量不使用DMA和使用DMA两种情况下屏幕刷新的帧率,以了解DMA在提高数据传输效率方面的优势。 DMA是一种允许外设直接访问内存的技术,无需CPU介入。在使用FSMC进行大量数据传输到LCD屏幕时,如果使用DMA,则可以大幅度减轻CPU的负担,提高数据传输的效率,从而提升屏幕的刷新速度。在实验中,通过对比使用DMA和不使用DMA两种情况下的帧率,可以看到显著的性能差异。 整个实验的关键点在于正确配置STM32F1的FSMC外设和定时器,以及DMA控制器。FSMC需要被配置为支持所连接的LCD控制器的接口类型和时序参数,定时器则用于产生精确的时间基准,而DMA则需要正确设置以完成内存和外设之间的高效数据传输。 在实验的根据测试结果得出FSMC+DMA刷屏速度相较于单独使用FSMC的性能提升,并对不同LCD控制器的性能进行评估,从而为后续的项目选择合适的LCD控制器和驱动方式提供数据支持。 本实验是一项深入探究STM32F1系列微控制器在图形显示领域应用的实践。通过FSMC的使用,学习如何实现与多种LCD控制器的通信,并通过实验对比DMA与非DMA模式下屏幕刷新速度的差异,理解DMA技术在提高数据传输效率方面的优势。这些知识和技能不仅能够增强工程师对STM32F1系列微控制器的理解,也为未来在嵌入式系统设计中遇到的图形显示需求提供了实际的解决方案。
2025-08-19 11:32:42 15.77MB 工程代码 STM32F1 FSMC DMA
1
内容概要:本文档详细解析了MTK摄像头架构,重点介绍了HAL层和Kernel驱动层的功能与实现细节。HAL层主要负责传感器电源控制及相关寄存器操作,而Kernel驱动层则通过imgsensor.c控制传感器的上下电及其具体操作。驱动程序分为两部分:imgsensor_hw.c负责电源管理,xxxmipiraw_sensor.c负责传感器参数配置。传感器数据经由I2C接口传输至ISP处理并保存至内存。文档还深入探讨了帧率调整机制,即通过修改framelength来间接调整帧率,并展示了关键结构体如imgsensor_mode_struct、imgsensor_struct和imgsensor_info_struct的定义与用途。此外,文档解释了传感器驱动的初始化过程,包括入口函数注册、HAL层与驱动层之间的交互流程,以及通过ioctl系统调用来设置驱动和检查传感器状态的具体步骤。 适合人群:具备一定嵌入式系统开发经验,尤其是对Linux内核有一定了解的研发人员,特别是从事摄像头模块开发或维护工作的工程师。 使用场景及目标:①理解MTK摄像头架构的工作原理,特别是HAL层和Kernel驱动层的交互方式;②掌握传感器驱动的开发与调试方法,包括电源管理、参数配置和帧率调整;③学习如何通过ioctl系统调用与内核模块进行通信,确保传感器正确初始化和运行。 阅读建议:此文档技术性强,建议读者在阅读过程中结合实际代码进行实践,重点关注传感器驱动的初始化流程、关键结构体的作用以及帧率调整的具体实现。同时,建议读者熟悉Linux内核编程和I2C通信协议,以便更好地理解和应用文档中的内容。
2025-07-22 14:01:05 15KB Camera驱动 Kernel开发 I2C
1
Linux是一种广泛使用的开源操作系统,其内核版本5.4是该操作系统发展过程中的一个版本更新。在这个版本的Linux内核中,已经包含了对TinyDRM的支持。TinyDRM是一个轻量级的显示管理器,主要负责对显示设备进行驱动管理,是DRM(Direct Rendering Manager)的一个简化版本。DRM是Linux内核中负责图形显示输出的核心组件,它能够有效地管理显卡资源,并提供图形硬件加速等高级功能。 ili9488是一个常见的TFT LCD控制器,广泛应用于各种中小型显示屏。该控制器支持高分辨率显示,并能够提供良好的色彩表现力。在这里,ili9488被用作320x480分辨率的SPI屏幕的核心控制芯片。SPI(Serial Peripheral Interface)是一种常用的串行通信协议,由于其简单的四线连接方式(包括时钟线、主从设备选择线、主设备数据输出线、主设备数据输入线),SPI在嵌入式系统中尤为常见。40M SPI指的是该SPI屏幕通信速率达到了40Mbps,较高的通信速率可以确保数据传输的高速和稳定性。 lvgl(Light and Versatile Graphics Library)是一个开源的嵌入式图形库,它允许开发者在有限资源的嵌入式设备上实现复杂的图形用户界面。lvgl的设计理念是为了在资源受限的系统中实现图形界面的高效渲染,它提供了丰富的图形元素和控件,以及灵活的布局管理。在此例中,lvgl被用于测试例程,以验证TinyDRM驱动ili9488 SPI屏幕的性能。根据描述,该测试例程的平均帧率能够达到350帧每秒以上,这一数据表明了系统在图形渲染方面的高性能。 从以上的描述中我们可以总结出以下几点关键信息: 1. Linux 5.4内核版本支持TinyDRM,并可以有效地驱动显示设备。 2. TinyDRM作为一种轻量级的DRM,适用于资源有限的嵌入式系统。 3. ili9488控制器配合320x480分辨率的SPI屏幕使用,能够实现清晰的显示效果。 4. SPI通信速率提升至40Mbps能够保证数据传输的效率。 5. lvgl图形库可以在嵌入式系统中实现高效的图形渲染,并支持复杂的用户界面设计。 6. 通过lvgl测试例程获得的高帧率表明了整个显示系统的高性能表现。 这一套配置在图形处理和显示性能方面表现优异,对于需要在嵌入式设备上实现高质量图形界面的开发者来说,这是一个值得借鉴的案例。
2025-07-21 17:24:27 4KB Linux ili9488 lvgl spi
1
Fraps是一款专为游戏设计的实用工具,它主要用于测量并显示游戏中的帧率(FPS)。这个软件在游戏性能分析和视频录制方面有着显著的作用,是许多游戏玩家和内容创作者的首选工具。 我们来详细了解Fraps的核心功能——测帧率。帧率,即每秒显示的图像帧数,是衡量游戏流畅度的重要指标。Fraps可以在游戏界面上实时显示当前的FPS值,帮助玩家了解游戏在不同场景下的性能表现。这对于优化硬件设置、调试游戏配置或者对比不同硬件性能具有极大的价值。通过观察帧率的变化,玩家可以找出可能导致卡顿或延迟的问题,并据此调整显卡驱动、游戏设置或硬件配置。 Fraps的另一大特色是其无损高质量的游戏视频录制功能。它可以记录游戏过程中的每一帧,保存为未经压缩的原始分辨率视频,这确保了视频的质量最大化,无论是分享精彩的游戏瞬间还是用于制作教学视频,都能提供出色的视觉体验。尽管无压缩的视频文件较大,但用户可以根据需求后期进行压缩处理,以达到理想的存储和传播效果。 Fraps的操作简便性也是其受欢迎的原因之一。它是一款绿色版软件,无需安装即可使用,减少了对系统的影响。用户只需启动Fraps,然后在游戏中开启录制,就能轻松捕获游戏画面。同时,Fraps还支持自定义热键,使得在游戏过程中快速启动和停止录制变得更加便捷。 此外,Fraps还具备截屏功能,玩家可以随时捕捉高清的游戏截图,保存为BMP或PNG格式,便于分享或制作攻略。这对于游戏开发者来说,也是一个有效的反馈工具,能够直观地看到游戏中可能出现的问题。 然而,需要注意的是,虽然Fraps在大部分游戏中表现优秀,但它可能不兼容所有游戏,部分游戏可能会因为Fraps的后台运行而产生冲突。因此,在使用前应先检查游戏的兼容性,并在必要时调整Fraps的设置,以避免对游戏性能造成负面影响。 Fraps作为一款专业级的游戏辅助工具,无论是对于追求极致游戏体验的玩家,还是对于游戏内容创作者,都提供了强大的性能监测和视频录制解决方案。它的易用性和高质量的输出,使得它在IT领域中占有一席之地。
2025-06-14 10:40:31 1.69MB 屏幕录制 游戏录制
1
用法链接:https://menghui666.blog.csdn.net/article/details/138167979?spm=1001.2014.3001.5502 基于QT+QML+C++实现的显示fps帧率的控件+源码 基于QT+QML+C++实现的显示fps帧率的控件+源码 基于QT+QML+C++实现的显示fps帧率的控件+源码 基于QT+QML+C++实现的显示fps帧率的控件+源码 基于QT+QML+C++实现的显示fps帧率的控件+源码
2025-04-21 11:07:33 3KB QML
1
OpenCV V4L2 使用OpenCV显示/处理摄像机流时,用于评估摄像机性能的一组应用程序(和帮助程序库)。 OpenCV构建脚本 该存储库还包含一个脚本及其相关文件,这些文件会自动启用具有各种功能和优化标记的OpenCV来进行获取,构建和安装。 该脚本还安装所需的依赖项。 此外,它会根据成功构建的要求自动尝试修补标头。 笔记 该脚本需要在其依赖项可用的同一文件夹中运行。 否则,脚本可能无法正常工作。 该脚本不会自动尝试安装CUDA。 必须手动安装。 对于Jetson主板,可以在找到说明。 编译安装 要安装优化的OpenCV,请执行以下操作: cd opencv bash opencv_install_script.bash 这样就可以成功安装OpenCV。 要构建示例应用程序和帮助程序库,请执行以下操作: cd .. mkdir build && cd build cmake
2023-03-26 16:32:05 23KB 系统开源
1
FpsService-帧率测试.rar
2022-11-18 16:48:04 3.31MB FpsService
1
        在 Qml 中,任何可视化的项的显示 ( 渲染 ) 都依赖一个根 QQuickWindow,它们包含了底层的场景图渲染器。         因此,如果我们想要在 Qml 中获取 FPS,则只需在窗口渲染场景图时记录帧数并计算帧率即可。         不过,需要注意的是:GUI 程序一般不会频繁刷新,并不建议使用循环 update() 来计算 ( 可行但并非最佳 )。
2022-11-08 14:25:05 3KB Qt Qml FPS
1
Video-Compression-motion-estimation-block-video-encoder:此存储库与视频压缩有关,更具体地说,与视频编码器的运动估计块(ME块)有关。 这是一个研究项目,旨在开发一种有效的运动估计算法,从而使视频压缩技术能够与高帧率视频和高分辨率视频保持同步。
2022-10-26 20:11:05 11.92MB resolution video matlab video-processing
1