为方便管理员更为直观地观察网络安全状况以便迅速作出应变措施, 提出了基于集对分析的网络安全态势评估模型。首先对各个传感器的数据进行预处理, 得到服务器和攻击的规范化数据, 然后利用集对分析理论融合来自多个传感器的数据得到主机的安全态势, 最后采用自下而上的层次化安全态势量化评估模型, 以评估网络的整体态势。通过对DARPA 2000数据集的分析, 证明集对分析比传统方法更能够对网络态势所处的级别进行明确划分, 更好地得出整个网络简单的安全态势。
1
计算机视觉、激光雷达-相机多传感器融合、相机标定的坐标系描述图
2022-12-05 13:26:16 96KB 计算机视觉 slam
1

针对被动传感器观测的非线性问题,将无迹变换引入卡尔曼滤波算法中.进一步,针对其弱可观测性,采用多个被动传感器集中式融合跟踪策略,提出了基于无迹卡尔曼滤波的被动多传感器融合跟踪算法.以3个被动站跟踪为例进行仿真研究,结果表明所提出的算法可达到比经典的扩展卡尔曼滤波算法更高阶的跟踪精度.

1
该课程主要是介绍了各个传感器(如相机,IMU,激光雷达和毫米波雷达等)的基础知识,以及它们之间的对比,如何将它们进行同步(如联合标定,空间同步等)和融合(如信息融合)。同时还包含ubuntu系统下的环境配置教程,如何搭建多传感器融合所需要的环境,点云去畸变以及对其问题,多相机的同步融合实战,相机与IMU的同步实战,相机与激光雷达的同步实战,激光与IMU的同步实战,相机与IMU的融合实战,LIDAR-RADAR的融合实战。该课程适用于刚入门视觉slam的小白,对了解自动驾驶中的感知模块具有比较大的帮助,它几乎涵盖了多传感器融合课程的全部算法和内容。毕业设计研究方向是多传感器融合的小伙伴可以看一下该课程,对完成毕业论文有一个很好的促进作用。
1
Matlab 科技专讲之《理解传感器融合与目标跟踪》,该视频专讲包括5个视频,以及对应的英文字幕。(1)什么是传感器融合;(2)融合磁力计、加速度计和陀螺仪来估计姿态;(3)融合GPS和IMU来估计位姿;(4)使用IMM滤波器来跟踪单个目标;(5)如何同步跟踪多个目标
2022-07-13 09:32:05 167.23MB 多传感器融合
1
人工智人-家居设计-多传感器融合智能检测机器人的研究及应用.pdf
2022-07-06 22:02:57 3.78MB 人工智人-家居
多传感器融合是一项结合多传感器数据的综合性前沿内容,主要包括Camera、激光雷达、IMU、毫米波雷达等传感器的融合,在自动驾驶、移动机器人的感知和定位领域中占有非常重要的地位;
随着机器人技术的不断发展,机器人的应用领域和功能有了极大的拓展和提高。智能化已成为机器人技术的发展趋势,而传感器技术则是实现机器人智能化的基础之一。由于单一传感器获得的信息非常有限,而且,还要受到自身品质和性能的影响,因此,智能机器人通常配有数量众多的不同类型的传感器,以满足探测和数据采集的需要。若对各传感器采集的信息进行单独、孤立地处理,不仅会导致信息处理工作量的增加,而且,割断了各传感器信息间的内在联系,丢失了信息经有机组合后可能蕴含的有关环境特征,造成信息资源的浪费,甚至可能导致决策失误。为了解决上述问题人们提出了多传感器融合技术(multi-sensorfusion)。  
2021-12-30 23:01:19 321KB 【深度】多传感器融合技术简介
1
多传感器信息融合技术的基本原理就像人的大脑综合处理信息的过程一样,将各种传感器进行多层次、多空间的信息互补和优化组合处理,最终产生对观测环境的一致性解释。
2021-12-19 10:47:52 51KB 多传感器 融合系统 特点 结构
1
无人驾驶中,IMU与GPS如何融合,位姿如何解算
2021-11-30 13:23:41 174KB sins GPS 多传感器融合 定位
1