基于FPGA的Verilog实现FOC电流环系统设计与实现方法——基于ADC与S-PWM算法优化及其代码解读手册,带simulink模型与RTL图解。,基于FPGA的FOC电流环手动编写Verilog实现:高效、可读性强的源码与Simulink模型组合包,基于FPGA的FOC电流环实现 1.仅包含基本的电流环 2.采用verilog语言编写 3.电流环PI控制器 4.采用SVPWM算法 5.均通过处理转为整数运算 6.采用ADC采样,型号为AD7928,反馈为AS5600 7.采用串口通信 8.代码层次结构清晰,可读性强 9.代码与实际硬件相结合,便于理解 10.包含对应的simulink模型(结合模型,和rtl图,更容易理解代码) 11.代码可以运行 12.适用于采用foc控制的bldc和pmsm 13.此为源码和simulink模型的价,不包含硬件的图纸 A1 不是用Matlab等工具自动生成的代码,而是基于verilog,手动编写的 A2 二电平的Svpwm算法 A3 仅包含电流闭环 A4 单采样单更新,中断频率 计算频率,可以基于自己所移植的硬件,重新设置 ,基于FPGA的FO
2025-09-27 15:53:14 83KB xbox
1
内容概要:本文介绍了基于FPGA的实时语音生成图像系统的设计与实现。该系统旨在为听障人士和婴幼儿提供一种全新的、直观的声音感知方式,通过FPGA实现语音信号的采集和传输,并在PC端完成语音识别和图像生成。系统的核心模块包括语音采集、I2C总线配置、异步FIFO、UART串口通信、PC端数据接收与音频恢复、离线语音识别和实时图像生成。语音采集模块使用WM8731音频编解码芯片进行模数转换,I2C总线用于配置WM8731的寄存器,异步FIFO解决跨时钟域数据传输问题,UART模块负责数据传输,PC端通过串口接收数据并恢复音频,使用Vosk离线语音识别模型将语音转换为文本,再调用火山方舟的seedream-3-0模型API生成图像。 适合人群:对FPGA技术有一定了解,从事电子信息系统开发的技术人员,特别是关注助听设备和教育辅助工具的研发人员。 使用场景及目标:①实现语音信号的实时采集、传输和处理;②为听障人士和婴幼儿提供直观的声音感知方式;③推动FPGA技术在语音信号处理领域的应用,探索其在实时性、精度和功耗等方面的优化潜力;④为相关领域的技术进步和发展提供技术支持。 其他说明:该系统不仅为听障群体和婴幼儿提供便捷有效的辅助工具,还在教育、医疗、娱乐等领域具有广泛应用前景。通过该系统的实现,展示了FPGA在复杂信号处理任务中的优势,为未来的技术创新和应用提供了新的思路和方法。
2025-09-25 13:14:24 2.98MB FPGA 语音识别 图像生成 WM8731
1
内容概要:本文详细介绍了基于FPGA的2DPSK调制解调系统的Verilog实现方法。首先解释了2DPSK的基本原理,即利用相邻码元的相位变化来表示数据,而不是直接传输绝对相位。接着,文章展示了具体的硬件实现步骤,包括差分编码、载波生成、相位切换以及解调端的关键技术如延迟相干法和积分判决。文中还提供了详细的Verilog代码片段,涵盖了差分编码器、载波发生器、相干解调器等模块的设计,并强调了时序对齐的重要性。此外,作者分享了一些实用技巧,如使用查找表代替DDS核节省资源,以及在积分判决前增加滑动平均滤波器提高抗噪声能力。最后,通过仿真实验验证了系统的性能,在20dB信噪比下实现了低于10^-4的误码率。 适合人群:具有一定FPGA开发经验的工程师和技术爱好者,尤其是对通信调制解调感兴趣的读者。 使用场景及目标:适用于希望深入了解2DPSK调制解调机制并在FPGA平台上进行实际开发的人群。主要目标是掌握2DPSK的工作原理及其在FPGA上的具体实现方法,能够独立完成类似项目的开发。 其他说明:文章不仅提供了理论讲解,还包括大量实战经验和优化建议,有助于读者更好地理解和应用所学知识。
2025-09-20 23:58:39 1.41MB FPGA Verilog 相干解调
1
基于FPGA的DDS信号仿真,DDS技术是一种通过数字计算生成波形信号的方法,其核心原理是利用数字相位累加器和波形查找表(ROM)生成高精度、频率可调的波形信号。DDS系统的主要组成部分包括频率控制字(Fword)、相位累加器、相位控制字(Pword)和波形查找表。在DDS系统中,频率控制字决定了输出波形的频率。频率控制字越大,相位累加器每个时钟周期增加的相位值就越大,从而输出波形的频率越高。相位累加器是DDS系统的核心部件,用于累加频率控制字。在每个时钟周期,相位累加器会将上一个周期的累加值与频率控制字相加,生成新的相位值。这个相位值用于波形查找表的地址生成。相位控制字用于实现相位偏移,通过将相位控制字加到相位累加器的输出中,可以实现输出波形的相位偏移,从而便于同步或相位调制等应用。波形查找表存储了一个周期波形的数据,例如正弦波、方波和三角波。相位累加器的输出作为地址输入到波形查找表,查找到相应的波形数据输出。 波形ROM模块通过查找表方式存储和输出波形数据。每种波形的数据表根据相应的波形公式预先计算并存储在ROM中。在系统运行过程中,DDS模块根据当前相位值读取ROM中的波形数据。
2025-09-12 18:17:50 34.95MB fpga开发 vivado
1
针对传统磁通门信号处理电路中模拟元件的缺点,设计一种基于现场可编程门阵列(FPGA)的数字磁通门系统。整个系统采用闭环结构,由激励产生模块、信号处理拱块和负反馈模块组成。外围模拟电路用高速D/A、A/D芯片取代,有利于系统温度稳定性的提到。FPGA内的数字逻辑实现了磁通门信号解算、激励正弦信号发生、D/A、A/D输入/输出串并转换的功能,首先用硬件描述语言(HDL)设计并仿真,然后下载、配置到FPGA中,调试完成后进行实验,通过实时处理双铁芯磁通门传感器探头输出信号对系统进行测试。实验结果证实了系统功能的正确性。闭环结构的采用提高了系统信号梯度线性度,与模拟系统相比,基于数字逻辑的设计温度性能更稳定,更易于小型化,可移植性更强。 《基于FPGA的数字磁通门传感器系统设计与实现》 磁通门传感器,作为一种高灵敏度和可靠性的弱磁检测设备,自1935年问世以来,已在多个领域广泛应用,包括航空、航天、地质勘探和医疗卫生等。它利用双铁芯结构,通过改变磁导率将被测磁场调制成激励信号的偶次谐波,然后通过信号处理系统提取相关信息,转换为直流信号输出。 传统的磁通门信号处理电路依赖于模拟元件,这导致其温度稳定性较差,难以小型化,且移植性低。为解决这些问题,本文提出了一种基于现场可编程门阵列(FPGA)的数字磁通门系统。FPGA因其灵活的可编程性,成为实现高效、稳定和可移植的磁通门系统的关键。 该系统采用闭环结构,由激励产生模块、信号处理模块和负反馈模块组成。激励产生模块由FPGA内的数字逻辑生成正弦激励信号,通过高速D/A转换器输出。信号处理模块则由高速A/D转换器采集磁通门传感器探头的输出信号,经过相敏整流和低通滤波,提取出直流信号。负反馈模块则通过积分放大、D/A转换器及反馈网络,实现对探头补偿线圈的反馈,以实现磁场的精确测量。 FPGA在此系统中的作用至关重要,它不仅能够实现信号处理的各种逻辑功能,还能够通过硬件描述语言(HDL)进行设计和仿真,然后下载配置到FPGA中,进行实时处理。在实验验证中,该系统成功处理了双铁芯磁通门传感器探头的输出信号,实验结果表明系统功能正确,具有较高的信号梯度线性度。 相比于模拟系统,基于FPGA的数字设计显著提高了温度稳定性,并降低了对外部环境的敏感性,使得系统更易小型化,移植性更强。这一创新设计对于提升磁通门传感器的性能和应用范围具有重要意义,特别是在需要稳定性和便携性的场合,例如在极端环境条件下的磁场测量。 基于FPGA的数字磁通门系统设计和实现,通过集成化的数字逻辑处理,克服了传统模拟电路的局限性,实现了更精确、稳定的磁场测量,为磁通门技术在现代科技领域的应用开辟了新的可能。
2025-09-10 16:41:26 188KB FPGA
1
针对目前使用FPGA实现鱼眼校正算法时占用资源多以及延时长等问题,本文提出并设计了一种基于FPGA的鱼眼图像校正系统。鱼眼校正算法采用球面等距投影法,使用查表的方式在FPGA中实现。通过读写片外SDRAM的方式来实现查表功能。实验测试表明,该系统不仅能够完成鱼眼校正的任务,而且相较于同平台上基于Cordic算法的系统而言,更节省硬件资源和具有更好的实时性。
2025-09-10 13:13:17 1.73MB 现场可编程门阵列; SDRAM控制器
1
内容概要:本文详细介绍了基于FPGA的紫光同创盘古-50k平台实现四路视频拼接系统的全过程。系统接收HDMI、摄像头及以太网输入的不同分辨率视频流,经过分辨率适配、DDR3缓存仲裁、坐标映射和像素仲裁等步骤,最终实现四路视频的无缝拼接。文章不仅展示了具体的Verilog代码实现,还分享了许多实际开发中的经验和技巧,如跨时钟域处理、DDR3带宽优化以及视频流的动态配置等。 适合人群:具有一定FPGA开发经验的研发人员和技术爱好者。 使用场景及目标:适用于需要进行多路视频拼接的应用场景,如展厅展示、监控系统等。目标是帮助开发者理解和掌握FPGA视频处理的关键技术和实现方法。 其他说明:文中提供了大量实用的代码片段和调试技巧,对于初学者来说是非常宝贵的学习资料。此外,作者还提到了一些常见的错误及其解决方案,有助于提高开发效率并减少调试时间。
2025-09-09 22:11:12 6.02MB FPGA Verilog DDR3 时钟管理
1
在数字信号处理领域,锁相放大技术是一种用于提取微弱信号的常用方法,尤其适用于存在大量噪声的复杂环境。本文介绍了一种基于现场可编程门阵列(FPGA)的数字锁相放大器的设计,该设计能够有效地从噪声中提取出有用的微弱信号。主要特点包括利用分布式算法实现数字低通滤波器,有效缓解了乘法器资源紧张的问题。 锁相放大器是一种同步相干检测器,它通过与参考信号的相关性来提高信号的信噪比。在强噪声干扰中,由于有用信号通常淹没在噪声中,传统的模拟信号处理方法难以有效提取信号。而锁相放大技术通过锁定特定频率的信号,过滤掉其他频率的噪声,从而实现信号的提取。 设计中的数字锁相放大器由以下几个主要部分构成:移相器、相关检测器、低通滤波器和矢量运算。移相器根据参考信号的频率将接收信号延迟半个周期,达到90度的移相效果。之后,相关检测器将移相后的信号与接收信号进行乘法操作,再通过低通滤波器处理以提取有用信号。在数字部分,主要利用FPGA实现,这对于硬件资源的分配和时序控制提出了更高的要求。 由于FPGA内乘法器资源有限,本文采用了分布式算法,该算法使用查找表(LUT)和移位寄存器代替乘法器,可以有效地节省硬件资源。分布式算法通过预先计算二进制位的所有累加组合并将其存储在LUT中,再通过移位操作和加法运算实现乘法累加运算。这种方法在FPGA设计中广泛使用,既节省了硬件资源,又满足了时序要求。 系统总体框图中的数字锁相放大器部分,具体包括移相器、相关检测器、低通滤波器和矢量运算模块。接收的模拟信号首先通过天线前置放大和AD转换,之后进入FPGA进行数字信号处理。通过移相器对信号进行90度的相位移动,然后与参考信号进行相关性检测,从而实现信号的提取。低通滤波器负责过滤掉高频率的噪声,提取出有用信号。矢量运算则根据信号的相位和幅度进行相关计算,最终得到信噪比提高后的信号。 在FPGA实现过程中,需要考虑到硬件资源和理论设计之间的差异。设计人员通过分布式算法有效解决了FPGA内部乘法器资源紧缺的问题,这对于实际应用具有重要的意义。 本设计采用的FIR滤波器是利用Matlab中的滤波器设计工具fdatool进行设计的,其参数设定了通带范围和滤波器的阶数。滤波器的理想幅频响应曲线为设计提供了直观的参考。数字滤波器的结构框图展示了其由M位移位寄存器、LUT查找表和加减运算部分组成。这种结构使得滤波器在处理信号时能够更加灵活和高效。 基于FPGA的数字锁相放大器的设计是微弱信号检测领域的一项创新技术,它不仅提高了信号处理的精确度,而且优化了硬件资源的使用。通过应用分布式算法,它解决了FPGA内部资源紧张的问题,并通过数字低通滤波器有效地提高了信噪比。这些技术的进步对于未来的测井技术及其他应用领域具有重要的推动作用。
2025-09-08 18:45:35 2.48MB
1
在汽车倒车安全领域,超声波回波信号处理扮演着至关重要的角色,其核心目标是及时准确地检测到障碍物的距离和方位。随着汽车安全需求的提升,超声波倒车系统的应用越来越广泛。超声波测距技术利用超声波在空气中传播的时间差来计算与障碍物的距离,其原理是基于汽车倒车时发射超声波,超声波遇到障碍物后反射回,通过测量超声波传播的时间与速度计算出距离。 为了提高超声波测距的准确性,研究者设计并实现了一种新的回波信号处理算法。这个算法的核心在于采用了互相关法检测回波。互相关法是一种利用两个信号的相关性来检测信号之间相似程度的数学方法。在超声波信号处理中,通过比较发射信号和接收到的回波信号之间的相关性,可以精准地确定回波信号的时刻,进而准确地计算出障碍物的距离。 为了进一步提高回波信号处理算法的精度,研究者提出了改进的算法,即在互相关算法之前,先通过峰值滤波器对回波信号进行预处理。峰值滤波器是一种能有效提取信号峰值部分的滤波技术,通过滤除信号中的噪声和不相关的干扰,确保互相关法检测的准确性,从而提高整个系统的检测精度和抗干扰能力。 在算法的仿真阶段,研究者选用了Matlab作为仿真环境。Matlab是一种强大的数值计算和可视化软件,广泛应用于算法仿真和工程计算领域。利用Matlab强大的数学运算功能和直观的图形界面,可以方便地对超声波回波信号处理算法进行仿真测试,验证算法的有效性和准确性。 硬件实现方面,研究者选用了EP4CE22F17C8 FPGA作为核心处理芯片,并结合了AD7484这款高性能的模数转换器。FPGA(Field-Programmable Gate Array,现场可编程门阵列)是一种可以由用户自行编程实现特定逻辑功能的数字电路芯片。FPGA内部包含大量的可编程逻辑单元,能够实现并行处理,特别适合于实现复杂信号处理算法。EP4CE22F17C8 FPGA集成了丰富的逻辑资源,非常适合于高性能信号处理的应用场景。 在实现过程中,研究者还调用了Quartus II软件中提供的免费IP核(Intellectual Property Core,知识产权核心),并结合Verilog硬件描述语言进行硬件电路设计。Verilog是一种硬件描述语言(HDL),用于电子系统的建模和描述,可以被编译成用于FPGA和ASIC的硬件实现代码。通过Verilog语言编写的硬件描述代码,可以被编译器转换成FPGA的配置文件,实现特定的硬件功能。 通过FPGA的板级验证,验证了所设计的回波信号处理算法。板级验证是在FPGA开发板上实现算法并进行测试的过程,可以直观地观察到硬件实现的效果和性能。通过板级验证的结果表明,所提出的改进算法有效地增强了超声波回波信号处理系统的抗干扰能力和检测精度,这对于提高汽车倒车安全系统中障碍物检测的准确性和可靠性至关重要。 关键词中的“集成电路设计”、“FPGA”、“回波信号”、“互相关”、“峰值滤波器”、“AD7484”等都是与本项目直接相关的专业术语。这些术语代表了该研究项目的重点技术领域和所使用的关键技术组件。 中图分类号TP274.53表明该研究属于信号处理领域的子分类,文章编号和DOI为本篇论文提供了唯一的标识码和电子检索码,方便读者查找和引用。 总体来说,本论文所涉及的知识点涵盖了超声波测距技术、互相关检测算法、峰值滤波技术、FPGA硬件设计、Verilog编程以及板级验证等多个专业领域。这些知识点的掌握和应用对于超声波回波信号处理的设计与实现至关重要,并且在汽车倒车安全系统中具有重要的应用价值。
2025-09-08 16:18:18 1.6MB
1
内容概要:本文详细介绍了如何利用FPGA进行高效的实时图像处理,重点在于使用帧间差分法实现运动追踪和物体检测。文中首先阐述了系统的硬件架构,包括图像缓存、差分计算和目标标记三个主要模块。接着深入探讨了各个模块的具体实现细节,如双口RAM用于帧缓存、Verilog代码实现差分计算以及形态学处理去除噪点。此外,还讨论了如何通过连通域标记算法优化运动区域识别,并展示了如何在HDMI输出层叠显示运动区域。文章强调了硬件实现的优势,特别是在资源受限的情况下,帧间差分法能够显著提升处理速度和效率。最后,作者分享了一些实际部署中的经验和教训,如时钟域交叉问题、形态学处理的优化以及阈值自适应调整。 适合人群:对FPGA开发和实时图像处理感兴趣的工程师和技术爱好者,尤其是有一定硬件编程基础的人群。 使用场景及目标:适用于需要快速响应和低延迟的运动追踪应用场景,如安防监控、工业自动化等领域。目标是帮助读者掌握FPGA在实时图像处理中的应用技巧,理解帧间差分法的工作原理及其优势。 其他说明:文章不仅提供了详细的代码片段和实现思路,还分享了许多实战经验,有助于读者更好地理解和应用相关技术。
2025-09-08 15:35:44 114KB FPGA 帧间差分 实时图像处理 Verilog
1