目前,基于深度学习的目标检测方法主要有两大分支,分别是基于区域提取的两阶段目标检测模型和直接进行位置回归的一阶段目标检测模型。
故本项目通过采用深度学习方法实现对吸烟行为的目标检测,使用python语言搭建YOLO算法实现对吸烟行为的实时监测。
YOLO算法将整幅图像分为了多个网格单元,对每个网格中心目标进行检测,该算法不用生成候选区域,在一个卷积网络中就可以完成特征提取、分类回归等任务,检测过程得到了简化,检测速度也变得更快,但该算法对于小尺度目标的检测不够准确,如果图像中存在重叠遮挡等现象就可能出现遗漏。
1