内容概要:本文档详细介绍了DeepSeek从零开始的本地部署流程,涵盖环境准备、硬件要求、Ollama框架安装、DeepSeek模型部署、Web可视化配置以及数据投喂与模型训练六个方面。硬件配置方面,根据不同的模型参数,提供了基础、进阶和专业三种配置建议。软件依赖包括特定版本的操作系统、Python和Git。Ollama框架的安装步骤详尽,包括Windows系统的具体操作和验证方法。模型部署部分,针对不同显存大小推荐了合适的模型版本,并给出命令行部署指令。Web可视化配置既可以通过简单的Page Assist插件实现,也可以采用Open-WebUI进行高级部署。最后,文档还讲解了数据投喂与模型训练的方法,提供了模型管理命令和常见问题解决方案。 适合人群:对深度学习模型本地部署感兴趣的开发者,尤其是有一定Linux命令行基础、对深度学习框架有一定了解的技术人员。 使用场景及目标:①希望在本地环境中搭建DeepSeek模型并进行交互测试的研发人员;②需要将DeepSeek模型应用于特定业务场景,如文本处理、数据分析等领域的工程师;③希望通过Web可视化界面更直观地操作和监控模型运行状态的用户; 阅读建议:由于涉及到较多的命令行操作和环境配置,建议读者在阅读时准备好实验环境,边学边练,同时参考提供的命令和配置示例进行实际操作,遇到问题可以查阅文档中的常见问题解答部分。
2025-06-16 13:48:42 802KB 模型部署 Web可视化 数据训练
1
内容概要:本文详细介绍了使用Python进行时间序列分析和预测的方法,特别是针对月度NDVI(归一化差异植被指数)数据。首先,文章展示了如何导入必要的库和数据,并对数据进行了初步探索与清洗,包括处理缺失值和将日期列设置为索引。接着,通过可视化手段展示了原始数据的分布情况,并应用季节分解方法分析了数据的趋势、季节性和残差成分。为了检验数据的平稳性,文中使用了ADF(Augmented Dickey-Fuller)测试,并对非平稳数据进行了差分处理。此外,文章还深入探讨了自相关函数(ACF)和偏自相关函数(PACF)图的应用,以帮助选择合适的ARIMA模型参数。最后,文章构建并评估了一个SARIMA模型,用于预测未来三年(2023-2025年)的月度NDVI值,并通过图形展示了预测结果及其置信区间。 适合人群:具备一定Python编程基础的数据分析师、数据科学家以及对时间序列分析感兴趣的科研人员。 使用场景及目标:① 学习如何处理和分析时间序列数据,包括数据预处理、可视化和模型选择;② 掌握ADF测试、ACF/PACF图的解读以及SARIMA模型的构建和评估;③ 实现对未来NDVI值的预测,并理解预测结果的置信区间。 其他说明:本文提供了完整的代码示例,涵盖了从数据加载到模型训练和预测的所有步骤。读者可以通过运行这些代码来加深对时间序列分析的理解,并应用于类似的数据集上。建议读者在实践中逐步调试代码,结合理论知识,以更好地掌握时间序列建模的技术。
1
wordpress自动采集Scrapes插件,支持ripro,modown,子比,7b2等多种WordPress主题 支持PHP7.4,PHP8.0及以上不支持 上传插件到wp-content/plugins目录,然后解压
2025-05-25 01:08:37 2.35MB wordpress插件
1
基于Harry Potter的数据可视化数据集,内含2个工作簿,第一个的内容为人物关系的字段,第二个工作簿为人物名字以及他的传记的介绍。详细代码介绍参考https://blog.csdn.net/qq_57329395/article/details/127224354#comments_24427142。通过networkx进行关系图的绘制。 由于networkX是根据edge的关系来绘图,我们需要将关系整理成为元组格式,如('Sirius Black', 'Harry Potter')编号转名字将所有关系保存到列表里即可使用add_edges_from来绘制关系图。 我们拿到的数据有两个分页,分页character含有全部的哈利波特全部的人物姓名和id号及任务简介;分页relation含有带有id号的人物关系,但是该分页没有人物的姓名。我们需要整理数据为以下格式:('Sirius Black', 'Harry Potter')。
1
QT库是一种跨平台的C++应用程序开发框架,广泛用于创建桌面和移动应用,尤其是在需要图形用户界面(GUI)的情况下。在数据可视化的领域,QT提供了一系列工具和类库,允许开发者构建强大的数据可视化图表,帮助用户更好地理解和分析数据。本文将深入探讨如何使用QT来生成数据可视化图表。 一、QT数据可视化基础 1. QT Chart模块:QT框架中的QtCharts模块是专门用于生成各种2D图表的库,包括折线图、柱状图、饼图、散点图等。通过QtCharts,开发者可以轻松地创建动态、交互式的图表,以显示复杂的数据集。 2. 数据绑定:在QT中,图表和数据之间的绑定是通过模型-视图-控制器(MVC)架构实现的。你可以创建一个自定义的数据模型,然后将其连接到图表视图,使得数据的变化能够实时反映在图表上。 二、创建图表 1. 导入模块:你需要在你的代码中导入QtCharts模块,例如: ```cpp #include ``` 2. 创建图表对象:接下来,创建特定类型的图表对象,如折线图(QLineSeries)、柱状图(QBarSeries)或饼图(QPieSeries)。 3. 添加数据:向系列中添加数据点,例如对于折线图: ```cpp QLineSeries *series = new QLineSeries(); series->append(0, 5); series->append(1, 10); // ... 添加更多数据点 ``` 4. 设置图表:为图表设置标题,轴标签,单位等,例如: ```cpp QChart *chart = new QChart(); chart->setTitle("数据可视化示例"); chart->addSeries(series); chart->createDefaultAxes(); // 自动创建X轴和Y轴 chart->axisX()->setLabel("X轴标签"); chart->axisY()->setLabel("Y轴标签"); ``` 5. 显示图表:将图表附加到视图组件并显示在界面上: ```cpp QChartView *chartView = new QChartView(chart); chartView->setRenderHint(QPainter::Antialiasing); ui->verticalLayout->addWidget(chartView); // 假设ui有垂直布局管理器 ``` 三、交互与动画 1. 交互性:QT Charts支持用户交互,如点击图表元素获取详细信息,缩放和平移等操作。可以通过设置图表的行为来启用这些功能。 2. 动画效果:通过调用`QAbstractSeries::setAnimationOptions()`方法,可以为数据更新添加平滑动画效果,使视觉体验更流畅。 四、自定义样式 QT Charts提供了丰富的定制选项,可以调整颜色、样式、标记、轴样式等,以满足特定的设计需求。例如,你可以更改系列的颜色、形状,或者自定义轴的刻度和标签。 五、实际应用 在实际项目中,QT生成的数据可视化图表常用于数据分析软件、仪表盘应用、科学可视化工具等。结合后端数据处理,可以实时展示和更新大量数据,帮助决策者迅速理解复杂的信息。 QT是一个强大且灵活的工具,用于构建数据可视化应用。通过学习和掌握QT Charts,开发者能够创建出专业且功能丰富的数据图表,从而提升应用的用户体验和数据分析能力。
2024-09-05 13:51:26 6KB 数据图表
1
《大数据项目实战》分析及可视化数据
2024-07-02 09:32:22 188KB
1
汽车销量可视化分析是一种基于数据可视化技术的分析方法,旨在通过可视化方式展示汽车销售数据,帮助人们更加直观地了解市场趋势、市场份额和市场机会,以便制定更好的销售策略和市场规划 背景: 随着汽车市场的竞争日益加剧,汽车制造商和销售商需要了解市场趋势、竞争对手的销售状况、消费者购车偏好等信息,以制定更好的销售策略和市场规划。而数据可视化技术则是一种有效的手段,能够将复杂的数据信息以图形化的方式展示出来,帮助人们更好地理解和分析数据。 目的: 揭示汽车市场的销售趋势,如品牌销量变化、车型销量比例变化等。 帮助人们了解市场份额和市场机会,以制定更好的市场营销策略和销售计划。 提供数据支持,帮助汽车制造商和销售商更好地了解消费者需求和购车偏好,以设计更合适的汽车产品。 意义: 汽车销量可视化分析能够帮助汽车制造商和销售商更好地了解市场趋势和消费者需求,以便制定更好的销售策略和市场规划。 可视化分析能够直观展示数据,让人们更容易理解和分析数据,提高决策的准确性和效率。 汽车销量可视化分析能够帮助汽车企业更好地了解自身在市场中的竞争地位,并及时调整市场策略。
1
☆ 资源说明:☆ [Apress] 数据可视化 高级程序设计 (R 及 JavaScript 实现) (英文版) [Apress] Pro Data Visualization using R and JavaScript (E-Book) ☆ 出版信息:☆ [作者信息] Tom Barker [出版机构] Apress [出版日期] 2013年06月19日 [图书页数] 216页 [图书语言] 英语 [图书格式] PDF 格式
2023-12-23 07:00:46 9.43MB JavaScript R 数据可视化
1
DataViz 在Golang中构建和可视化数据结构。 受Memviz和Gods的启发,这个库可以帮助用户使用标准的数据结构,同时为他们提供构建自己的数据结构和可视化选项的工具....
2023-04-01 09:31:10 76KB Go开发-其它杂项
1