上传者: 31988139
|
上传时间: 2025-06-10 20:07:08
|
文件大小: 18KB
|
文件类型: TXT
内容概要:本文详细介绍了使用Python进行时间序列分析和预测的方法,特别是针对月度NDVI(归一化差异植被指数)数据。首先,文章展示了如何导入必要的库和数据,并对数据进行了初步探索与清洗,包括处理缺失值和将日期列设置为索引。接着,通过可视化手段展示了原始数据的分布情况,并应用季节分解方法分析了数据的趋势、季节性和残差成分。为了检验数据的平稳性,文中使用了ADF(Augmented Dickey-Fuller)测试,并对非平稳数据进行了差分处理。此外,文章还深入探讨了自相关函数(ACF)和偏自相关函数(PACF)图的应用,以帮助选择合适的ARIMA模型参数。最后,文章构建并评估了一个SARIMA模型,用于预测未来三年(2023-2025年)的月度NDVI值,并通过图形展示了预测结果及其置信区间。
适合人群:具备一定Python编程基础的数据分析师、数据科学家以及对时间序列分析感兴趣的科研人员。
使用场景及目标:① 学习如何处理和分析时间序列数据,包括数据预处理、可视化和模型选择;② 掌握ADF测试、ACF/PACF图的解读以及SARIMA模型的构建和评估;③ 实现对未来NDVI值的预测,并理解预测结果的置信区间。
其他说明:本文提供了完整的代码示例,涵盖了从数据加载到模型训练和预测的所有步骤。读者可以通过运行这些代码来加深对时间序列分析的理解,并应用于类似的数据集上。建议读者在实践中逐步调试代码,结合理论知识,以更好地掌握时间序列建模的技术。