单细胞RNA测序(scRNA-seq)技术的发展,让研究者可以在细胞水平上探索生物学活动,有助于发现新的细胞类型和分析细胞间的相互作用。scRNA-seq数据中细胞类型的注释是一个关键且耗时的过程,其质量直接影响到后续的分析。准确地识别潜在的细胞类型,能够为发现新的细胞群体或识别已知细胞的新标记提供宝贵的见解,这些标记在未来的研发中可能会被利用。尽管已有多种种群注释的方法,最常用的方法之一是使用已知的细胞标记。CellMarker2.0数据库,一个经过人工审核的细胞标记物数据库,从已发表的文章中提取细胞标记物,广泛用于此目的。然而,它目前仅提供基于网页的工具,这在与Seurat等工作流程集成时可能会感到不便。为了解决这一限制,我们介绍了easybio,一个专为使用CellMarker2.0数据库与Seurat结合的单细胞注释流程设计的R包。easybio提供了一系列功能,用于本地查询CellMarker2.0数据库,为每个群集提供潜在细胞类型的见解。除了单细胞注释外,该包还支持包括RNA-seq分析在内的各种生物信息学工作流程,使其成为转录组研究的多功能工具。 细胞类型的准确识别对于许多下游分析至关重要。已经开发出多种单细胞注释方法,包括GPT-4、SingleR和CellMarker2.0等。SingleR方法是一种监督式方法,它依赖于参考数据集来保证准确性,但在处理时间上可能会有所耗费。为了提高注释的准确性,研究人员已经评估了这些方法的性能,结果显示CellMarker2.0数据库因其全面和准确的细胞标记集合,已成为常用工具之一。 easybio的设计初衷是简化单细胞注释流程,同时与Seurat等流行的单细胞分析工具集成,使得研究者能够更加高效地处理数据。该R包不仅提供了查询CellMarker2.0数据库的功能,还为用户提供了对数据集内每个群集可能细胞类型的深入见解。这使得研究人员可以在单细胞研究的早期阶段,就对细胞类型有充分的了解,进而指导后续实验和研究方向。 此外,easybio包不仅仅局限于单细胞注释,它还能够支持RNA测序分析等多种生物信息学工作流程。这意味着,该软件不仅可以用于单细胞研究,还可以作为分析转录组数据的多功能工具,极大地扩展了其应用范围和灵活性。通过easybio包,研究人员能够在一个软件包中完成多个步骤的工作,这不仅可以提高工作效率,而且可以确保分析结果的一致性和可重复性。 easybio的出现对于简化单细胞转录组数据分析流程,提高细胞类型注释的准确性和效率具有重要意义。它不仅优化了现有工具的不足,还提供了一个集成化、功能全面的解决方案,极大地促进了单细胞研究的进展和生物信息学研究的深入。
2025-04-26 00:07:30 776KB
1
k-means聚类算法及matlab代码安全聚类 SAFE(来自Ensemble的单细胞聚合聚类):单细胞RNA-seq数据的聚类集成 尽管最近已经开发出几种方法来使用单细胞RNA-seq(scRNA-Seq)数据对细胞类型进行聚类,但它们利用了数据的不同特征,并且在聚类数量和实际聚类分配方面均产生了不同的结果。 在这里,我们介绍了SAFE聚类,单细胞聚合(来自Ensemble)聚类,这是一种灵活,准确且可靠的聚类scRNA-Seq数据的方法。 SAFE聚类将多种聚类方法的结果作为输入,以构建一个共识解决方案。 SAFE聚类目前嵌入了四种最先进的方法,即SC3,CIDR,Seurat和t-SNE + k -means。 并使用三种基于超图的分区算法将这四种方法的解决方案整合在一起。 SAFE聚类由Yuchen Yang []和Yun Yun []维护。 新闻与更新 2020年9月7日 2.00版已发布 SAFEclustering中使用的Seuart版本已更新为版本3。Seuratv.2不再兼容 SAFE聚类仅接受计数数据。 其他格式,例如FPKM,CPM和RPKM不再兼容 2018年
2023-04-18 14:15:42 4.17MB 系统开源
1
康诺斯 Conos:在样本网络上聚类 什么是conos? Conos是一个R包,用于将大量单细胞RNA-seq数据集组合在一起,从而既可以识别复发性细胞簇,又可以在多样本或Atlas规模集合中的数据集之间传播信息。 它着重于跨异构样本集合的同源细胞类型的均匀映射。 例如,用户可以研究来自癌症患者的数十种外周血样本的收集以及数十种对照,其中可能包括相关组织(如淋巴结)的样本。 它是如何工作的? Conos应用了许多容易出错的方法中的一种来对齐集合中的每对样本,从而建立了加权的样本间单元间链接。 然后可以分析所得的联合图,以识别不同样品之间的亚群。 相同类型的单元格将倾向于在许多此类成对比较中相互映射,从而形成可以识别为簇(图社区)的集团。 Conos处理可以分为三个阶段: 阶段1:过滤和归一化使用标准软件包对样本面板中的每个单独的数据集进行过滤和归一化,以进行单数据集处理: pag
2023-04-17 22:04:16 10.14MB scrna-seq single-cell-rna-seq batch-correction R
1
剑桥大学2018年单细胞转录组分析教程,包含数据过滤、序列比对、差异基因计算等R语言包、代码
2023-03-27 12:48:00 28.84MB single cell 转录组 单细胞
1
scRNAseq-AML 急性髓细胞白血病数据集的单细胞分析
2023-01-03 18:01:57 5KB R
1
单细胞常规巴氏涂片图像数据集,数据库由4049个分离细胞图像组成,这些细胞图像是从巴氏涂片的966个群集细胞图像中手工提取的。(包含:im_Dyskeratotic im_Koilocytotic im_Metaplastic im_Parabasal im_Superficial-Intermed这个五类)
2022-12-09 15:28:19 403.14MB 数据集 细胞 巴氏涂片 深度学习
差异缺失分析 差异缺失分析可捕获单细胞RNA测序数据中的生物学变异 单细胞RNA测序数据的特征是具有大量的零计数,但是越来越多的证据表明这些零反映了生物变异而不是技术伪像。 我们提出了差异缺失分析(DDA),以鉴定单细胞RNA测序数据中生物变异的影响。 使用16个公开可用的模拟数据集,我们显示DDA可以准确地检测生物变异,并且可以比依赖计数的方法更可靠地评估转录本的相对丰度。 可从获得DDA。 可以在此处找到相关手稿图形的脚本,功能和源数据。 此外,从原始数据矩阵中的Seurat对象开始,描述了DDA的两个小插曲 可以在bioRxiv上找到手稿的预印本: ://doi.org/10.1101/2021.02.01.42929187 可以在一个闪亮的应用程序中交互式地浏览结果: : :
2022-10-30 15:38:22 96.15MB HTML
1
单细胞测序数据聚类待读文献
2022-10-19 09:07:51 10.55MB
1
多对象单细胞反卷积(MuSiC) MuSiC是一种反卷积方法,它利用跨学科的scRNA-seq来估计大量RNA-seq数据中的细胞类型比例。 如何引用MuSiC 请引用以下出版物: 具有多对象单细胞表达参考的大体积组织细胞类型反卷积X.Wang,J.Park,K.Susztak,NRNR Zhang,M.Li 自然通讯。 2019年1月22日 安装 # install devtools if necessary install.packages( ' devtools ' ) # install the MuSiC package devtools :: install_github( ' xuranw/MuSiC ' ) # load library( MuSiC ) 更多信息 请参阅。
2022-07-13 15:18:32 62.98MB statistical-genetics single-cell-rna-seq R
1
科学路径 通过整合途径改善单细胞RNA-seq聚类 内容描述 我们设计了一个框架(sciPath),以通过整合途径来研究现有单细胞聚类的准确性和鲁棒性,包括10种最新的单细胞聚类方法和4种途径数据库,途径整合方法和一套完整的评估指标。 准备工作 1.数据集演示数据集保存在".//Demo_data" ,包括scRNA-seq矩阵(".//Demo_data//matrix") ,路径(".//Demo_data//pathway")和单元格标签(".//Demo_data//label") 。 2.软件包安装脱机软件包和联机软件包的安装代码保存在".//package//package_install.R" 。 代号 1. clustering_by_gene_only.R 仅考虑基因水平信息的单细胞聚类,包括(1)K均值,(2)分级,(3)光谱,(4)DBSCAN,(5)SC3,(6)
2022-06-23 17:08:04 23.76MB Python
1