ChatGPT市场反应热烈,国内外巨头纷纷入场 据统计,ChatGPT日活跃用户数的增速远超Instagram,1月份平均每天有超过1300万名独立访问者使用ChatGPT,是去年12月份的 01 两倍多;国内外科技巨头都非常重视ChatGPT引发的科技浪潮,积极布局生成式AI,国内厂商(百度、腾讯等)也高度关注ChatGPT, 积极探索前沿技术,相关深度应用也即将推出。 ChatGPT经历多类技术路线演化,逐步成熟与完善 02 ChatGPT所能实现的人类意图,来自于机器学习、神经网络以及Transformer模型的多种技术模型积累。Transformer建模方法成熟以后,使用一套统一的工具来开发各种模态的基础模型这种理念得以成熟,随后GPT-1、GPT-2、GPT-3模型持续演化升级,最终孵 化出ChatGPT文本对话应用。 03 AIGC跨模态产业生态逐步成熟,商用落地未来可期 AIGC产业生态当前在文本、音频、视频等多模态交互功能上持续演化升级,奠定了多场景的商用基础。跨模态生成技术也有望成为真 正实现认知和决策智能的转折点。 ChatGPT乘东风,商业架构日益清晰 04 ChatGPT,全名是Chat-based Generative Pre-trained Transformer,是由OpenAI公司研发的一款基于人工智能技术的文本对话应用。OpenAI成立于2015年,由包括埃隆·马斯克在内的多位硅谷知名人士共同创建,旨在推动人工智能的开放研究,并促进其安全发展。起初作为非营利组织,OpenAI在2019年后逐渐转向商业化,尤其在微软的投资支持下,其技术商业化进程显著加速。 ChatGPT的成功在于其背后的技术积累,尤其是Transformer模型的演进。Transformer模型由Vaswani等人在2017年提出,革新了序列建模的方法,极大地提升了机器翻译和其他自然语言处理任务的性能。随着GPT-1、GPT-2和GPT-3模型的相继推出,这一系列模型在预训练和微调的过程中不断优化,使得ChatGPT能够理解和生成更为复杂和自然的人类语言,从而实现更准确地理解和响应用户的意图。 AIGC,即人工智能生成内容,是ChatGPT所属的生成式AI领域的重要组成部分。随着技术的发展,AIGC不仅局限于文本领域,还拓展到了音频、视频等多模态交互,这为未来的广泛应用奠定了基础。跨模态生成技术的进步有望开启认知和决策智能的新篇章,让AI在更多场景下具备智能理解和生成的能力。 ChatGPT的商业价值日益显现,它不仅在传媒、影视、营销、娱乐等领域展现出巨大潜力,还能通过提升生产力曲线和赋能虚拟经济与实体经济,助力产业升级。例如,ChatGPT可以用于内容创作、客户服务、教育辅导等多个方面,实现个性化和高效的服务。随着ChatGPT Plus的发布,商业化布局已经开始,标志着生成式AI进入了一个全新的阶段。 ChatGPT作为生成式AI的代表,以其独特的技术优势和广泛的应用前景,正在引领一场科技变革。国内外科技巨头纷纷跟进,投入资源研发相关技术,预示着AI领域将迎来更加平民化和多样化的应用时代。随着技术的不断进步和完善,我们有理由期待ChatGPT及其类似技术将在未来产生更深远的影响,推动人工智能技术向更智能、更人性化的方向发展。
2025-05-29 11:45:10 4.25MB 人工智能 深度学习 机器学习
1
在本篇人工智能实验报告中,我们深入探讨了五个核心主题:决策树、循环神经网络、遗传算法、A*算法以及归结原理。这些是人工智能领域中的关键算法和技术,它们在解决复杂问题时扮演着重要角色。 让我们来了解**决策树**。决策树是一种监督学习方法,广泛应用于分类和回归任务。它通过构建一系列规则,根据特征值来做出预测。在报告中,可能详细介绍了ID3、C4.5和CART等决策树算法的构建过程,以及剪枝策略以防止过拟合。此外,实验可能涵盖了如何处理连续和离散数据、评估模型性能的方法,如准确率、混淆矩阵和Gini指数。 **循环神经网络(RNN)**是深度学习中的一类重要模型,特别适合处理序列数据,如自然语言处理。RNN的特点在于其内部状态可以捕获时间序列的信息,这使得它们在处理时间依赖性问题时表现优秀。长短期记忆网络(LSTM)和门控循环单元(GRU)是RNN的变体,有效解决了梯度消失和爆炸的问题。实验可能包括RNN的搭建、训练和应用,如文本生成或情感分析。 接下来,我们讨论**遗传算法**。这是一种基于生物进化理论的全局优化方法。在报告中,可能详细阐述了遗传算法的基本步骤,包括编码、初始化种群、选择、交叉和变异操作。实验可能涉及实际问题的求解,如旅行商问题或函数优化。 **A*算法**是一种启发式搜索方法,用于在图形中找到从起点到目标的最短路径。它结合了Dijkstra算法和启发式函数,以提高效率。A*算法的核心在于如何设计合适的启发式函数,使之既具有指向目标的导向性,又不会引入过多的开销。实验可能涉及实现A*算法,并将其应用在地图导航或游戏路径规划中。 **归结原理**是人工智能和逻辑推理中的基础概念。归结是证明两个逻辑公式等价的过程,常用于证明定理和解决问题。报告可能涵盖了归结的规则,如消除冗余子句、子句分解、单位子句消除等,并可能通过具体实例演示如何使用归结证明系统进行推理。 通过这些实验,参与者不仅能够理解各种算法的工作原理,还能掌握如何将它们应用到实际问题中,提升在人工智能领域的实践能力。报告中的流程图和实验指导书将有助于读者直观地理解和重现实验过程,进一步深化对这些核心技术的理解。
2025-05-28 19:27:34 3.2MB 人工智能
1
今天抽空跟大家讨论一下关于成为AI人工智能算法工程师的条件是什么?众所周知,AI人工智能是当前最热门的技术之一,那么需要掌握哪些技术才能胜任这一职位呢?我们今天就来唠一唠。 算法工程师是一个很高端的岗位,要求有很高的数学水平和逻辑思维能力,需要学习高等数学、离散数学Q、线性代数、数据结构和计算机等课程。 专业要求:计算机、通信、数学、电子等相关专业。 学历要求:本科及其以上学历,大多数都是硕士及其以上学历。 语言要求:英语要求熟练,基本上可以阅读国外相关的专业书刊。 另外,还必须要掌握计算机相关的知识,能够熟练使用仿真工具MATLAB等,必须要掌握一门编程语言。
2025-05-28 09:54:29 2KB 人工智能
1
《NanoEdge AI Studio 多分类章节例程详解》 NanoEdge AI Studio 是一款强大的人工智能开发平台,它提供了丰富的工具和资源,帮助开发者快速构建、训练和部署AI模型。本章节我们将深入探讨其在多分类任务中的应用,通过具体的实例——"motor_detect"项目,来解析如何利用NanoEdge AI Studio进行此类工作。 一、多分类任务概述 在机器学习领域,多分类任务是指让模型学习识别并区分多个类别,例如识别图像中的不同物体、音频中的多种声音等。在这个"motor_detect"项目中,我们可能面临的是对不同类型的马达进行分类,如电动机、内燃机等。 二、数据集准备 数据集是训练模型的基础,对于多分类问题,数据集需包含各类别的样本。在NanoEdge AI Studio中,我们可以上传或导入已有的"data_set",确保每个类别的样本数量足够且分布均衡,以避免过拟合或欠拟合问题。"motor_detect"数据集应包含各种马达的录音或振动数据,每种类型马达的样本数量应该充足,以便模型能充分学习它们的特征。 三、特征工程 特征工程是将原始数据转化为模型可学习的输入的过程。在"motor_detect"项目中,可能需要提取音频文件的频谱特征,或者振动数据的时间序列特征。NanoEdge AI Studio提供了一系列预处理工具,如滤波、降噪、特征提取等,帮助我们构建有效的特征向量。 四、模型选择与训练 在NanoEdge AI Studio中,我们可以选择适合多分类任务的模型,如决策树、随机森林、支持向量机、神经网络等。对于"motor_detect"这样的时间序列数据,可能更适合使用循环神经网络(RNN)或长短时记忆网络(LSTM)。模型的训练过程涉及设置超参数、划分训练集和验证集,并通过反向传播优化权重,以达到最佳性能。 五、模型评估与优化 在模型训练完成后,需要使用验证集评估模型性能,通常会关注准确率、精确率、召回率、F1分数等指标。若模型表现不佳,可以调整超参数,或者尝试不同的模型架构。NanoEdge AI Studio的可视化工具能帮助我们直观理解模型的性能并进行调优。 六、模型部署与应用 一旦模型满足需求,就可以将其部署到边缘设备或云端,实现实时的马达类型识别。NanoEdge AI Studio支持多种部署选项,包括嵌入式设备、服务器或云服务,确保模型能在实际环境中高效运行。 总结,"NanoEdge AI Studio 多分类章节例程"为我们提供了一个学习和实践多分类任务的优秀平台。通过"motor_detect"项目,我们可以了解从数据准备到模型部署的全过程,提升在人工智能领域的技能。在实践中不断学习和优化,将有助于我们在未来应对更多复杂的人工智能挑战。
2025-05-27 17:12:07 21.86MB 人工智能
1
## 一、项目背景 共交通工具的“最后一公里”是城市居民出行采用公共交通出行的主要障碍,也是建设绿色城市、低碳城市过程中面临的主要挑战。 共享单车(自行车)企业通过在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供服务,完成交通行业最后一块“拼图”,带动居民使用其他公共交通工具的热情,也与其他公共交通方式产生协同效应。 共享单车是一种分时租赁模式,也是一种新型绿色环保共享经济。自2014年ofo首次提出共享单车概念,至今已陆续产生了25个共享单车品牌,与传统的有桩借还自行车相比,无桩的共享单车自由度更高,广受用户好评。 本次分析拟取2016年8月某共享单车在北京地区的车辆订单数据,从时间、空间、频次三个维度进行分析,对该品牌共享单车的发展方向提出改善性意见。 ## 二、数据说明 该数据共超过`10w`行数据,共`14个`字段。
2025-05-27 14:04:33 9.37MB python 数据分析 人工智能 可视化
1
OpenCV(开源计算机视觉库)是计算机视觉领域中一个强大的工具,它包含了众多用于图像处理、计算机视觉以及机器学习的函数。在这个主题中,“OpenCV人脸识别与目标追踪”涵盖了两个核心概念:人脸识别和目标追踪。 人脸识别是计算机视觉的一个重要分支,它的主要任务是识别和定位图像或视频流中的面部特征。OpenCV提供了多种方法来实现这一功能,包括Haar级联分类器、LBP(局部二值模式)特征和Dlib库等。Haar级联分类器是最常用的方法,通过预训练的级联分类器XML文件,可以检测到图像中的面部区域。而LBP则更关注局部纹理信息,适用于光照变化较大的环境。Dlib库则提供了更高级的人脸关键点检测算法,能够精确地标定眼睛、鼻子和嘴巴的位置。 目标追踪,另一方面,是指在连续的视频帧中跟踪特定对象。OpenCV提供了多种目标追踪算法,如KCF(Kernelized Correlation Filters)、CSRT(Constrast-sensitive Scale-invariant Feature Transform)、MOSSE(Minimum Output Sum of Squared Error)等。这些算法各有优势,例如,KCF以其快速和准确而著称,CSRT则在目标遮挡和形变时表现出良好的稳定性。 在实际应用中,人脸识别通常用于安全监控、身份验证或社交媒体分析等场景。目标追踪则广泛应用于视频监控、无人驾驶、运动分析等领域。理解并掌握这两种技术对于开发智能系统至关重要。 在OpenCV中,通常先通过人脸检测算法找到人脸,然后利用特征匹配或模板匹配等方法进行人脸识别。目标追踪则需要选择合适的追踪算法,初始化时标记要追踪的目标,之后算法会自动在后续帧中寻找并更新目标位置。 为了实现这些功能,开发者需要熟悉OpenCV的API接口,包括图像读取、处理和显示,以及各种算法的调用。同时,了解一些基本的图像处理概念,如灰度化、直方图均衡化、边缘检测等,也有助于更好地理解和优化这些算法。 在“OpenCV人脸识别与目标追踪”的压缩包中,可能包含了一些示例代码、预训练模型和教程资源,这些都可以帮助学习者深入理解和实践这两个主题。通过学习和实践这些内容,开发者不仅可以提升自己的OpenCV技能,还能为未来的人工智能和计算机视觉项目打下坚实的基础。
2025-05-27 12:10:37 1KB opencv 人工智能 人脸识别 目标跟踪
1
在IT领域,语音信号处理是一项重要的技术,广泛应用于通信、语音识别、听力辅助设备和人工智能等领域。本资源“语音信号处理实验教程(MATLAB源代码)语音降噪.rar”提供了一个学习和实践这一技术的平台,特别关注的是如何使用MATLAB进行语音降噪。 语音信号处理是将语音信号转换为可分析、操作和存储的形式的过程。在这个过程中,我们通常会遇到噪声干扰,这可能会影响语音的清晰度和理解性。因此,语音降噪是提高语音质量的关键步骤,它涉及识别和去除噪声,同时保留语音信号的主要成分。 MATLAB是一种强大的数值计算和数据可视化工具,常用于信号处理和机器学习项目。在语音降噪方面,MATLAB提供了丰富的函数库,如Signal Processing Toolbox和Audio Toolbox,它们包含各种滤波器设计、频谱分析和信号增强算法。 本教程可能涵盖以下知识点: 1. **信号模型**:了解语音信号的基本模型,包括加性噪声模型,其中原始语音信号被噪声污染。 2. **预处理**:预处理步骤,如采样率设置、预加重和窗口函数的应用,有助于改善信号的时频特性。 3. **噪声估计**:通过统计方法或自适应算法估计噪声特性,例如使用短时功率谱平均作为噪声的估计。 4. **降噪算法**:包括基于频率域的方法(如谱减法)、基于时域的方法(如Wiener滤波器)、以及现代深度学习方法(如深度神经网络)。 5. **滤波器设计**:学习如何设计线性和非线性滤波器来去除噪声,同时最小化对语音的影响。 6. **性能评估**:利用客观和主观评价指标(如PESQ、STOI)评估降噪效果。 7. **MATLAB编程**:实践编写MATLAB代码实现上述算法,理解其工作原理和参数调整。 8. **实例分析**:通过实际的语音样本进行实验,对比不同降噪方法的效果,深入理解每个方法的优缺点。 9. **结果可视化**:使用MATLAB的图形功能展示原始语音、噪声、降噪后的语音的频谱图,帮助理解降噪过程。 这个实验教程将引导学习者逐步探索语音降噪的各个方面,通过实际操作加深对理论知识的理解。通过这些MATLAB源代码,不仅可以学习到语音处理的基本概念,还可以掌握应用这些知识解决实际问题的能力。对于大数据和人工智能背景的学习者来说,这些技能对于构建更智能的语音交互系统具有重要意义。
2025-05-26 15:28:36 882KB 语音信号处理 matlab 人工智能
1
人工智能领域,随着深度学习技术的快速发展,大模型微调技术成为了一项重要的研究方向。模型微调,尤其是针对预训练语言模型的微调,已经成为提高特定任务性能的有力手段。本文将介绍如何使用LoRA技术进行qwen模型的微调,以期优化模型的推理效果。LoRA,即Low-Rank Adaptation,是一种新颖的参数高效微调方法,它通过引入低秩分解来调整预训练模型的权重,显著减少了微调时所需的计算资源和存储成本。 在进行模型微调之前,首先需要准备相应的数据集文件。这些数据集需要覆盖所期望训练模型执行的任务领域,以确保微调后的模型能够适应具体的应用场景。例如,如果目标是进行自然语言处理任务,那么就需要准备大量的文本数据,包括标注数据和未标注数据。数据集的选择和质量对最终模型的性能有着直接的影响。 训练环境的搭建是模型微调的第二个重要步骤。由于使用了LoRA技术,因此需要配置支持该技术的深度学习框架和计算资源。在教程中,会提供详细的环境搭建指南,包括必要的软件安装、依赖项配置、以及可能需要的硬件配置建议。对于初学者而言,这一部分的教程能够帮助他们快速进入模型微调的学习状态,无需过多地担心环境搭建的问题。 接着,我们将详细解析LoRA微调的python代码。在代码中,会具体展示如何加载预训练的qwen模型,如何应用LoRA进行微调,以及如何在特定的数据集上进行训练。代码部分不仅包含模型的调用和微调,还包括了如何保存和加载微调后的模型,以及如何评估微调模型的效果。通过这些实际的代码操作,初学者可以清晰地理解模型微调的整个流程,并掌握相应的技能。 LoRA微调方法的核心优势在于其高效率和低资源消耗。在微调过程中,LoRA技术通过低秩分解来寻找最有效的权重更新方式,这意味着在更新模型时只需要对少量的参数进行调整。这样不仅节约了存储空间,也减少了训练时间,特别适合于资源受限的环境,如边缘计算设备或移动设备。 此外,本资源还特别适合初学者使用。它从基础的模型微调概念讲起,逐步深入到LoRA微调的具体技术细节。通过实例化的教程和代码,初学者能够循序渐进地学习并实践大模型微调技术。通过本资源的学习,初学者不仅能够理解模型微调的基本原理,还能掌握实际操作技能,并能够将所学应用到实际项目中去。 在总结以上内容后,本资源的实用性便不言而喻。无论是对于从事人工智能研究的专业人员,还是对于刚接触模型微调的初学者,本资源都提供了一个很好的起点,帮助他们快速理解和掌握LoRA微调技术,有效地优化模型的推理效果。通过这份资源,用户可以更容易地将先进的模型微调技术应用于自己的项目中,提升人工智能应用的性能和效率。
2025-05-26 10:42:15 132KB 人工智能 LoRA
1
析城市经济与住宅市场的关联机制:通过 36 个城市 2012-2021 年的经济与住宅市场数据,探究城市经济指标(如 GDP、产业结构、财政收支等)与住宅价格(含商品房、二手房)的相互影响关系,识别影响住宅价格的关键经济驱动因素。 构建住宅价格估值模型:以具体城市(如数据完整度较高的城市)为例,结合经济指标与住宅市场数据(如房地产开发投资额、销售面积、价格等),建立房价预测模型,为城市住宅市场调控与居民购房决策提供参考。 揭示区域差异与空间分布特征:对比不同城市的住宅价格及其影响因素,分析经济发展水平、人口结构(户籍人口缺失需注意)与住宅市场的空间差异,为城市分类施策提供依据。
2025-05-25 20:56:26 533KB python 大数据分析 人工智能 数据分析
1
基于深度学习的旧视频修复训练模型
2025-05-25 20:12:44 833.57MB 深度学习 人工智能 python
1