主要是关于人工智能、大语言模型、ChatGPT、Deepseek等各类AI学习的相关资料、文档。
2025-11-18 11:21:50 34.27MB 人工智能 AI学习
1
内容概要:本文系统讲解了LangChain的核心原理与Prompt Engineering实战应用,重点介绍如何从零构建可落地的对话式知识库。通过六大核心抽象(Schema、Model、PromptTemplate、Chain、Memory、Agent)实现模块化编排,结合RAG技术提升问答准确率,并以PDF文档问答为例展示了完整的技术闭环:文档加载、文本分块、向量化存储、检索增强生成与语义缓存优化。代码实例详尽,涵盖性能调优与压测验证,体现了高可用性和工程落地价值。; 适合人群:具备Python基础和NLP背景,从事AI应用开发、智能客服或知识管理系统研发的工程师,尤其是工作1-3年希望深入大模型应用层的技术人员; 使用场景及目标:①构建企业内部文档智能问答系统;②优化检索命中率与响应延迟;③降低大模型调用成本并控制幻觉输出;④实现可追溯、可缓存、支持多轮对话的企业级RAG应用; 阅读建议:建议结合代码环境动手实践,重点关注分块策略、语义缓存、自定义Prompt设计与性能压测环节,理解LangChain如何通过链式组合提升系统鲁棒性,并关注其在长上下文、Agent化与私有化部署方面的未来趋势。
2025-11-17 23:21:02 22KB Prompt Engineering
1
人工智能赋能的数字化智能工厂是制造业转型的重要方向,其通过高度自动化的生产线以及信息技术、制造技术与人工智能技术的深度融合,实现了制造过程的智能化、高效化和柔性化。智能工厂的定义和特点包括高度自动化,数据驱动的决策过程,灵活生产能力和资源节约与环保。在智能工厂中,自动化生产采用先进的设备和机器人,利用联网、大数据分析和人工智能技术,实现生产线的实时智能化管理,优化生产流程,提高效率和产品质量,减少无效工时和运营成本。 智能工厂的发展趋势体现在个性化定制、数字化与网络化、绿色制造等方面。个性化定制满足客户多样化和个性化的需求;数字化与网络化通过5G、物联网等技术实现设备间的互联互通,构建数字化、网络化的智能工厂;绿色制造则要求在制造过程中降低能耗、减少废弃物排放。 基于AI框架的智能工厂对制造业的意义重大。AI技术可以提高生产效率,降低运营成本,并增强市场竞争力。通过对生产过程的实时监测和智能化管理,AI技术确保了产品质量的稳定可靠,并可实现快速响应市场需求。 智能工厂的架构设计思路涉及系统整体架构、生产运营的管理、智慧生产与控制、以及智能物流等方面。系统整体架构基于大数据中心,实现制造能力与运营水平的提升;生产运营管理包括ERP、OA、EHR等系统的决策分析,提高制造水平;智慧生产与控制环节包括PDM、WMS、MES等任务令、生产、工艺、设备、物料、操作和环境管理;智能物流方面则通过AGV、传输线、机器臂等自动化设备实现生产线的无人化管理。 技术平台架构方面,智能工厂采用智能化云基础设施,结合智能大数据平台、多媒体平台、物联网平台和人工智能平台,实现计算与网络、存储和CDN、数据库、数据分析和多媒体服务等多方面的智能化。该架构还涉及到安全与管理、物联网服务、应用服务、网站服务应用引擎等,确保了智能工厂的高效、安全和可持续发展。 智能工厂的挑战主要包括技术、管理和运营等多方面的问题,例如数据安全、隐私保护、技术更新快速以及人才培养等。而其前景则包括智能化生产、网络化协同、规模化定制、服务和延申,以及虚拟化管理全生命周期等方向,为企业提供全价值链的优化方案,最终实现全产业链虚拟资源的有效利用。 展望未来,随着人工智能、边缘计算、工业以太网、卫星通信等技术的进一步发展,智能工厂将实现更加智能化的生产与管理。通过这些技术的综合运用,智能工厂将更好地适应市场变化,快速响应客户需求,实现供应链体系、金融体系的高效运作,为企业提供全方位的竞争优势。此外,人工智能与工业互联网的结合将推动智能工厂向更高层次的自动化和智能化发展,进一步提高制造业的整体水平和竞争力。
2025-11-17 17:33:35 5.55MB 人工智能 AI学习
1
资源内项目源码是均来自个人的课程设计、毕业设计或者具体项目,代码都测试ok,都是运行成功后才上传资源,答辩评审绝对信服的,拿来就能用。放心下载使用!源码、说明、论文、数据集一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 4、如有侵权请私信博主,感谢支持
2025-11-17 11:03:27 40.72MB 深度学习 人工智能
1
百度飞桨项目PaddleOCR是百度公司研发的一个开源光学字符识别(OCR)工具库,旨在提供高精度、高灵活性、轻量级和易于部署的OCR模型。PaddleOCR V3作为该项目的一个重要版本,包含了多项改进与新特性,使其在名片识别、身份证识别以及社保卡识别等场景中具有更高的准确性与效率。 PaddleOCR V3的模型文件主要包括了以下三个核心组件:ch_PP-OCRv3_det_infer.onnx、ch_PP-OCRv3_rec_infer.onnx 和 ch_ppocr_mobile_v2.0_cls_train.onnx。这些文件分别对应不同的功能模块: 1. ch_PP-OCRv3_det_infer.onnx:这个模型文件是用于文本检测(Detection)的推理模型。它能够高效地定位图像中文字的位置,是OCR识别的第一步。在实际应用中,它能够识别出图像中的各种文本框,为后续的识别步骤提供准确的定位信息。 2. ch_PP-OCRv3_rec_infer.onnx:此文件代表的是文本识别(Recognition)模型。它接受由检测模块提供的文本区域作为输入,并将其转换成可编辑的文本格式。在V3版本中,此模型进一步优化了识别准确率和速度,支持中英文以及多种字体的识别。 3. ch_ppocr_mobile_v2.0_cls_train.onnx:这是训练用的分类(Classification)模型文件,主要用于在训练阶段对文本行进行分类。例如,在处理复杂的文档时,可以利用此模型将不同类别的文本进行区分,以便进行更精准的文本检测和识别。 PaddleOCR V3模型采用了深度学习技术,结合了多种先进的神经网络架构,如卷积神经网络(CNN)和循环神经网络(RNN),以及百度飞桨(PaddlePaddle)深度学习平台提供的诸多高级特性。PaddlePaddle是百度自主研发的深度学习平台,支持大规模深度学习模型的训练和推理,具有良好的易用性和丰富的API接口,为PaddleOCR提供了强大的后端支持。 在实际应用中,PaddleOCR V3模型能够处理多种场景下的文本识别任务,比如文本定位、文字识别、身份证信息提取等。这些功能在金融科技、智能办公、政府公共管理、医疗健康等多个领域都有广泛的应用前景。例如,在银行或证券公司,PaddleOCR可以帮助自动化处理文件,减少人工审核的成本和时间;在公共安全领域,它可以快速准确地识别身份证件信息,提高信息处理的效率和准确性。 从技术的角度来看,PaddleOCR V3模型文件的开发与应用,展现了人工智能在图像处理和模式识别领域的强大能力。模型的轻量级设计使其可以在边缘设备上部署,不仅节省了成本,也提高了数据处理的安全性和隐私保护。 PaddleOCR V3模型文件是集成了前沿技术的高效、准确的OCR解决方案,其应用场景广泛,技术支持强大,是AI技术在文本识别领域应用的典范。
2025-11-17 10:32:03 11.67MB AI OCR 人工智能 身份证识别
1
本文详细介绍了基于GPT2模型的全量微调项目,旨在搭建一个医疗问诊机器人。项目从全量微调的简介开始,逐步讲解了数据与模型准备、数据集类及其导入器、模型配置与推理、模型训练等关键步骤。全量微调(Full Fine-tuning)是对整个预训练模型的所有参数进行微调,常用于文本生成任务。项目使用了医疗问诊数据进行微调,数据包括medical_train.txt和medical_valid.txt两个文件,分别包含9万多行和1200多行数据。硬件配置使用了RTX 3080显卡,显存为12G。文章还详细介绍了数据预处理、模型训练中的损失函数和精度计算,以及训练后的推理过程。最终的项目结构包括多个epoch的模型保存和推理测试,展示了模型在医疗问诊中的初步表现。 在人工智能领域,大型语言模型如GPT2在自然语言处理任务中表现出色。本项目聚焦于利用GPT2模型的先进能力,构建一个专门的医疗问诊机器人,这不仅是一项技术上的挑战,也对提升医疗服务质量、减轻医务人员的工作压力具有重要意义。项目的核心是通过全量微调的方式,使得GPT2模型能够更好地理解和生成与医疗问诊相关的文本,从而实现在模拟医疗问诊场景下的有效沟通。 为了实现这一目标,项目团队首先对全量微调的概念进行了阐述,并解释了为何选择这种方法,尤其是在面对需要精细控制语言生成细节的医疗问诊任务时。全量微调方法允许对预训练模型的每个参数进行微调,使其更贴合特定的文本生成任务,这在医疗问诊这种专业性强、对准确度要求极高的场景下尤为关键。 为了训练模型,项目团队精心准备了医疗问诊数据集,这些数据包括了真实场景下的问诊对话记录。数据集通过两个关键文件提供,分别是包含大量问诊记录的medical_train.txt和包含验证数据的medical_valid.txt。这些数据文件的规模和质量对于最终模型的性能有着直接的影响。 在硬件配置方面,项目的训练工作是在配备了RTX 3080显卡的计算平台上进行的。该显卡具备12GB显存,为处理大规模数据集和运行复杂的深度学习模型提供了必要的硬件支持。 数据预处理是机器学习项目中不可或缺的一个环节,本项目也不例外。数据预处理包括清洗、标准化等步骤,确保输入模型的数据质量,从而提高训练效果。项目的预处理步骤包括对原始医疗问诊记录的格式化和标记化,以便模型能够正确理解和处理数据。 模型配置与推理部分涉及了模型的具体搭建和参数设置。项目团队详细介绍了如何构建适合医疗问诊任务的模型架构,以及如何配置训练过程中的各种参数。模型配置的好坏直接关系到训练效果和最终模型的性能,因此,这部分内容是项目成功的关键。 训练过程采用了多种损失函数和精度计算方法,用于评估模型在训练集和验证集上的表现。损失函数的选择和精度计算方法反映了项目团队对训练动态和模型性能的深入理解。通过不断调整模型参数,使得模型在训练集上的损失逐渐降低,并在验证集上展现出良好的泛化能力。 最终的模型结构包括了多个epoch的模型保存和推理测试。Epoch是训练过程中模型完整遍历训练数据集的次数。多次迭代训练有助于模型捕捉到数据中的深层次特征,并提升其生成文本的质量。推理测试部分则是对模型在实际应用中的能力进行评估,项目团队通过设置特定的测试用例,检验了模型在模拟医疗问诊场景下的表现。 整个项目对于模型在医疗问诊中的初步表现进行了展示,这不仅仅是技术成果的展示,更体现了人工智能技术在特定领域的应用潜力。通过不断优化模型性能,未来这类医疗问诊机器人有望在实际医疗场景中扮演重要角色,为患者提供初步咨询,减轻医疗人员的工作压力,甚至在一定程度上辅助医生进行诊断。
2025-11-16 22:02:06 24.21MB 人工智能
1
人工智能》学习报告.doc
2025-11-12 20:24:32 39KB
1
该数据集涵盖2000-2022年中国省级及地级市产业集聚水平数据,采用区位熵值法和双重计算指标(工业增加值占比与从业人员密度)衡量产业空间集中度。核心指标包括:年份、地区代码、工业增加值、生产总值、从业人员数及行政面积,形成产业集聚水平1(经济规模比)和产业集聚水平2(就业密度)两种测算结果。数据覆盖全国31个省份和291个地级市,来源为《中国统计年鉴》《中国城市统计年鉴》等官方统计资料,适用于区域经济差异、产业政策效果等实证研究。部分版本提供Excel/Shp格式及可视化地图,参考文献包括杨仁发(2013)关于产业集聚与工资差距的研究,以及唐建荣(2021)对集聚环境效应的分析。数据经多平台校验,部分城市示例显示安康市2000年集聚水平为0.000555,上海市同期达0.131,反映显著的区域差异特征。
2025-11-10 18:12:11 6.34MB 人工智能 深度学习 数据统计
1
随着科技的快速发展,人类对于健康生活的追求已经进入了全新的智能化阶段。智能健康监测与建议系统应运而生,它通过整合先进的传感器数据和人工智能算法,为用户提供了前所未有的个性化健康管理服务。本文将深入探讨智能健康监测与建议系统的设计理念、关键技术以及系统实现,以期为改善现代人的生活品质提供更加精准的健康管理方案。 智能健康监测与建议系统的核心在于其能够采集和分析用户的健康数据。系统利用各种传感器,如心率监测器、血压监测器、血氧饱和度监测器等,能够实时追踪和记录用户的生理状态。这些传感器通常具有高精度、低功耗和易于携带的特点,能够无缝融入用户的日常生活中,提供持续的健康监控。 在数据收集之后,系统会将原始数据传输至数据处理模块。此环节是确保数据质量的重要步骤,需要进行数据清洁、数据变换和数据分析等操作。通过数据清洁,可以有效去除噪声和无关数据,确保数据的准确性和可靠性。数据变换则涉及将数据转换成适合后续分析的格式。数据分析是通过统计方法对数据进行深入挖掘,以揭示潜在的健康趋势和问题。 接着,处理完毕的数据将被送至人工智能算法模块。在这一环节,算法的核心作用是基于用户的具体数据提供实时监测和分析,从而生成个性化的健康建议。常见的算法包括决策树、随机森林、逻辑回归和支持向量机等。这些算法能够根据历史数据学习用户的健康模式,并预测未来可能出现的健康风险,帮助用户提前做好预防措施。 基于算法得出的结果,系统将生成个性化的健康建议。这些建议可能包括运动建议、饮食建议、睡眠建议等。通过对用户的生活习惯、健康状况和偏好进行综合分析,系统能给出科学合理的建议,从而辅助用户进行健康的生活方式调整。 系统实现环节确保了整个智能健康监测与建议系统的可靠性和可扩展性。在设计上,模块化设计、面向对象编程和微服务架构等方法的运用,不仅提升了系统的灵活性和可维护性,也便于未来功能的扩展和升级。系统整体设计要考虑到用户的便捷性、设备的兼容性以及数据的安全性,以确保用户能够轻松使用并放心地依赖于系统的建议。 智能健康监测与建议系统作为一个复杂的系统工程,其成功实施需要跨学科的合作。这意味着不仅需要嵌入式系统开发者的专业技能,还需要数据科学家、算法工程师以及健康专家的共同努力。系统必须能够适应不同用户的需求,同时保证数据处理的高效和算法的精准。 总结而言,智能健康监测与建议系统通过传感器技术实时监测用户健康状况,利用人工智能算法进行数据处理和分析,最终生成个性化的健康建议。它代表了健康科技领域的一个重要趋势,即从传统的被动式治疗转向主动式健康管理。随着技术的不断进步,这样的系统将更加智能、普及和亲民,为人们提供更加便捷、精准的健康管理服务,从而显著提高我们的生活品质。
2025-11-08 15:56:25 15KB 人工智能
1
在当今互联网时代,地图服务已经成为了人们日常生活和工作不可或缺的一部分。高德地图作为中国领先的地图服务商,不仅提供了丰富的地图浏览功能,还开放了API接口,供开发者进行各种应用的开发。而Python作为一种广泛使用的高级编程语言,其简洁的语法和强大的功能库使其在数据分析、人工智能、网络自动化等领域得到了广泛应用。 Python源码-高德地图.zip包中可能包含了使用Python语言编写的源代码,这些代码能够让用户通过高德地图API实现地图数据的获取、路径规划、地点搜索等多种功能。例如,开发者可以利用这些源码实现自动爬取地图数据,进行数据分析和处理,以满足不同场景下的需求。同时,这些源码还可以辅助开发者在Web自动化测试中模拟地图交互,验证应用程序对地图服务的集成情况。 人工智能领域与地图服务的结合,可以为地图提供更精准的个性化推荐,比如根据用户的喜好、行为习惯推荐餐厅、旅游路线等。Python中的人工智能库如TensorFlow、PyTorch等可以与高德地图的API进行深度集成,让开发者可以构建出基于位置数据的智能推荐系统。 数据分析方面,高德地图API提供的数据接口使得开发者可以收集并分析用户在地图上的行为数据。结合Python的数据分析库如Pandas、NumPy等,开发者可以对这些数据进行清洗、转换和可视化,从而洞察出各种有用的信息。例如,可以分析出某个地区在特定时间段内的交通流量、热点区域的分布等。 Web自动化方面,结合Python的Selenium库,开发者可以编写脚本模拟用户与高德地图的交互,进行自动化测试。这对于测试地图功能的稳定性和可靠性尤为重要,可以确保地图应用在上线前能够通过严格的测试流程。 通过这些源码,开发者不仅能快速构建出基于高德地图的应用,还能在多个领域实现创新应用。无论是在智能出行、位置服务、还是在线旅游等行业,这些源码都能够提供强大的技术支持。 Python源码-高德地图.zip文件中的内容很可能是一套完整的工具包,它通过Python编程语言与高德地图API的结合,为开发者提供了实现复杂地图功能和应用开发的便捷途径。这套工具包可能包含了多种实用的功能模块和示例代码,从而降低开发者入门门槛,加快开发进度,提高开发效率。无论是进行数据分析、人工智能模型开发,还是Web自动化测试,该工具包都可能成为开发者的得力助手。
2025-11-07 23:40:38 5.27MB python 源码 人工智能 数据分析
1