自然语言处理的子任务命名实体识别中文的数据集,很全
2023-02-25 17:23:59 148KB Resume NER中文数据集
1
使用预训练语言模型BERT做中文NER
2022-03-08 22:41:19 3.72MB Python开发-自然语言处理
1
https://github.com/google-research/bert 里的预训练好的中文的NER模型,该模型是中文命名实体识别的预训练模型chinese_L-12_H-768_A-12.zip,这个链接下载只需3积分,主要是想给大家提供方便,供大家学习使用。
2022-03-03 16:41:35 365.79MB 中文NER预训练模型 chinese_L-12_H-7 BERT
1
5个程序员刷题网站| 凯拉斯-伯特-纳 中文 NER 任务使用BiLSTM-CRF/BiGRU-CRF/IDCNN-CRF模型和预训练语言模型的Keras解决方案:支持BERT/RoBERTa/ALBERT )。 更新日志 2020年2月27日重构的代码keras_bert_ner并删除了一些多余的文件。 bert4keras == 0.2.5现在已集成为该项目的主要部分。 2019.11.14 bert4keras现在作为一个包使用,因为它没有太大变化。 albert 模型现在只能支持谷歌的版本。 2019.11.04修复计算句子准确率和做预测时结果错误的问题。 2019.11.01将keras-contrib crf_accuracy/ crf_loss替换为自定义的 crf_accuracy/crf_loss 来处理掩码标签。 未来的工作 迁移到 tensorflow 2.0。 添加其他 BERT 模型,例如 Distill_Bert、Tiny_Bert。 依赖关系 烧瓶== 1.1.1 keras == 2.3.1 numpy == 1.18.1 loguru == 0.4.1
2021-11-24 11:14:06 10.6MB 系统开源
1
BERT-CRF-for-Chinese-NER Using BERT+CRF model to do Chinese NER task 如何运行 链接: 密码: 0qtc 请从网盘链接下载bert-chinese预训练模型,放在chinese-bert文件夹下 直接python run_ner.py即可
2021-11-18 10:06:09 2.36MB 附件源码 文章源码
1
BERT-NER-Pytorch:三种不同模式的BERT中文NER实验
2021-10-14 18:04:19 280KB 自然语言处理
1
命名实体识别(Named Entity Recognition,NER)作为自然语言处理领域经典的研究主题,是智能问答、知识图谱等任务的基础技术。领域命名实体识别(Domain Named Entity Recognition,DNER)是面向特定领域的NER方案。
2021-08-22 13:16:40 928KB #资源达人分享计划# 中文NER
1
使用Bert的中文NER BERT代表中文NER。 数据集列表 cner:数据集/ cner 主持人: : 型号清单 BERT + Softmax BERT + CRF BERT +跨度 需求 1.1.0 = <PyTorch <1.5.0 cuda = 9.0 python3.6 + 输入格式 输入格式(首选BIOS标记方案),每个字符的标签为一行。 句子用空行分隔。 美 B-LOC 国 I-LOC 的 O 华 B-PER 莱 I-PER 士 I-PER 我 O 跟 O 他 O 运行代码 在run_ner_xxx.py或run_ner_xxx.sh修改配置信息。 sh scripts/run_ner_xxx.sh 注意:模型的文件结构 ├── prev_trained_model | └── bert_base | | └── pytorch_model.bin | | └── config.json | | └── vocab.txt | | └── ...... CLUENER结果 BERT在dev上的整体性能: 准确性(实体) 召回(实
2021-08-17 16:54:16 484KB nlp crf pytorch chinese
1