### 详解Python修复遥感影像条带的两种方式 #### 一、背景介绍 在遥感影像处理领域,经常会遇到由于各种原因导致的影像质量问题,其中一条常见的问题就是“条带”现象。条带(Stripes)是指在遥感影像上出现的一系列平行于扫描方向的明暗不均的带状区域,这种现象会严重影响影像的质量,进而影响后续的数据分析与应用。本文主要介绍了使用Python修复遥感影像条带的两种方法:一是基于GDAL库的方法,二是基于OpenCV库的方法。 #### 二、GDAL修复Landsat ETM+影像条带 **1. 背景** Landsat 7 ETM+(Enhanced Thematic Mapper Plus)卫星自1999年开始运行以来,为全球提供了大量高质量的多光谱遥感影像。然而,2003年5月后,由于扫描线校正器(Scan Line Corrector, SLC)故障,导致获取的影像中出现了明显的条带现象。这些条带严重影响了影像的质量,因此需要对其进行修复。 **2. GDAL修复条带的实现原理** GDAL(Geospatial Data Abstraction Library)是一款开源的地理空间数据管理和处理库,它支持多种格式的地理空间数据文件,并提供了一系列工具和API用于数据处理。GDAL中的`FillNodata`函数可以用于填充影像中的无效值,从而修复条带等缺陷。 **3. 代码实现** ```python import gdal from tqdm import tqdm def gdal_repair(tif_name, out_name, bands): """ 使用GDAL修复遥感影像条带 参数: tif_name (string): 源影像名称 out_name (string): 输出影像名称 bands (integer): 影像波段数 """ # 打开影像文件 tif = gdal.Open(tif_name) # 获取驱动程序 driver = gdal.GetDriverByName('GTiff') # 创建新影像 new_img = driver.CreateCopy(out_name, tif, 0) for i in tqdm(range(1, bands + 1), desc="Processing Bands"): # 获取当前波段 band = new_img.GetRasterBand(i) # 使用FillNodata对条带部分进行插值 gdal.FillNodata(targetBand=band, maskBand=band, maxSearchDist=15, smoothingIterations=0) # 将修复好的波段写入新数据集中 new_img.GetRasterBand(i).WriteArray(band.ReadAsArray()) # 示例调用 tif_name = "path/to/input.tif" out_name = "path/to/output.tif" bands = 7 # Landsat 7 ETM+通常有7个波段 gdal_repair(tif_name, out_name, bands) ``` **4. 效果展示** 修复后的影像将不再存在明显的条带现象,影像质量得到显著提升。 #### 三、OpenCV修复Landsat ETM+影像条带 **1. 背景** OpenCV(Open Source Computer Vision Library)是一个开源计算机视觉和机器学习软件库。虽然它主要用于计算机视觉任务,但在某些情况下也可以用于遥感影像处理。 **2. OpenCV修复条带的实现原理** OpenCV中的`inpaint`函数可以用来修复图像中的缺陷区域。这个函数通过分析周围的像素信息来进行修复,适用于修复较小的区域。 **3. 代码实现** ```python import gdal_array import numpy as np import cv2 from tqdm import tqdm def cv2_repair(tif_name): # 读取tif影像 tif_data = gdal_array.LoadFile(tif_name).astype('float32') # 获取掩膜 mask = tif_data.sum(axis=0) mask = (mask == 0).astype(np.uint8) bands = tif_data.shape[0] res = [] for i in tqdm(range(bands), desc="Processing Bands"): # 使用OpenCV的inpaint函数 repaired = cv2.inpaint(tif_data[i], mask, 3, flags=cv2.INPAINT_TELEA) res.append(repaired) return np.array(res) # 示例调用 tif_name = "path/to/input.tif" repaired_data = cv2_repair(tif_name) ``` **4. 效果展示** 使用OpenCV修复条带后,可以看到虽然处理速度较慢,但是修复效果更佳,影像整体质量更高。 #### 四、总结 通过对以上两种方法的对比可以看出,GDAL的方法更适合快速处理大量的遥感影像,而OpenCV的方法则更加注重修复效果的质量。在实际应用中,可以根据具体需求选择合适的方法进行遥感影像的条带修复处理。
2025-05-03 17:54:34 721KB Python 遥感影像条带
1
julia开发环境安装——VS code扩展和JuliaPro两种方式-附件资源
2024-07-08 11:10:59 23B
1
基于SerialPort控件的C++.Net winform串口数据发送与接收实例。数据接收两种方式:查询方式和事件方式
2024-05-04 13:32:36 6.93MB .net 串口 winform serialport
1
有ppt和springboot程序包,可以运行
2024-02-20 17:02:22 1MB spring boot java lua
1
项目中包括锂电池模型建立、参数辨识与验证、SOC估算采用扩展卡尔曼滤波(EKF),使用了两种方式实现: 1. Simulinks(EKF only) 2. 脚本(包含EKF和UKF) 模型的输入包括电流和电压来自于HPPC(混合脉冲功率特性)测试的电池数据 脚本文件可以仿真在BBDST(北京公交车动态街道测试)工况和带有观测噪声的恒流工况下的锂离子电池放电过程,利用EKF UKF方法估算电池荷电状态。
2023-11-06 09:23:46 769KB
1
方式一:$0,$1,$2.. 采用$0,$1,$2..等方式获取脚本命令行传入的参数,值得注意的是,$0获取到的是脚本路径以及脚本名,后面按顺序获取参数,当参数超过10个时(包括10个),需要使用${10},${11}….才能获取到参数,但是一般很少会超过10个参数的情况。 1.1 示例:新建一个test.sh的文件 #!/bin/bash echo 脚本$0 echo 第一个参数$1 echo 第二个参数$2 在shell中执行脚本,结果如下 $ ./test.sh 1 2 #shell中将会输出: 脚本./test.sh 第一个参数1 第二个参数2 1.2 下面是参
2023-10-03 11:39:31 48KB shell 参数 脚本
1
主要介绍了在IDEA中将Echarts引入web两种方式(使用js文件和maven的依赖导入),本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-16 17:49:12 93KB idea 将Echarts引入web maven的依赖导入
1
docker跨主机通信的两种方式。路由方式和网络桥接的实现
2023-03-11 21:27:02 344KB docker 跨主机通信
1
Windchill二次开发数据库连接及操作的两种方式代码 1.通过Windchill自身提供的API执行数据库连接和操作 2.JDBC连接Oracle执行查询和更新操作
2023-01-03 20:32:48 3KB Windchill java
1
.NET下rest 风格的服务 内含WCF和 web API 两种方式的demo.由于可能给同事讲解,因此不收分了。
2022-12-27 17:12:10 5.7MB .NET REST
1