2022长三角数学建模比赛B题论文:《基于一维卷积神经网络的齿轮箱故障诊断问题》

上传者: 53946559 | 上传时间: 2022-05-20 22:05:12 | 文件大小: 3.02MB | 文件类型: PDF
本文针对齿轮箱故障检测与诊断问题,运用信号处理和神经网络等相关知识,构建了小波变换模型、1D-CNN 模型进行齿轮箱工作状态的分析。综合运用 MATLAB 和 Python 等软件编程求解,通过模型参数调整使 1D-CNN 模型效果趋于最优,最终得到较为准确的诊断结果。对于输入神经网络的数据,进行训练集与测试集的划分以及归一化、编码分类标签等操作便于模型训练。 有问题欢迎私信沟通交流,共同学习! 参考文献 [1] 李鹏, 孔凡让, 何清波. 齿轮箱状态监测中的振动信号多标度分析[J]. 计算机工程, 2011, 37(14):242-244. [2] 杨永灿, 刘韬, 柳小勤,等. 基于注意力机制的一维卷积神经网络行星齿轮箱故障诊断 [J]. 机械与电子, 2021, 39(10):6. [3] 梁睿君, 冉文丰, 余传粮,等. 基于 CWT-CNN 的齿轮箱运行故障状态识别[J]. 航空动 力学报, 2021, 36(12):9. [4] 吴春志, 江鹏程, 冯辅周,等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲 击, 2018, 37(22):6.

文件下载

资源详情

[{"title":"( 1 个子文件 3.02MB ) 2022长三角数学建模比赛B题论文:《基于一维卷积神经网络的齿轮箱故障诊断问题》","children":[{"title":"2022长三角数学建模比赛B题论文:《基于一维卷积神经网络的齿轮箱故障诊断问题》.docx <span style='color:#111;'> 3.14MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明