目标检测模型-SSD检测模型-Pytorch版本

上传者: 49824703 | 上传时间: 2025-04-17 12:10:18 | 文件大小: 163.08MB | 文件类型: ZIP
SSD(Single Shot MultiBox Detector)是一种流行的目标检测框架,它以其速度快和性能好而闻名。SSD通过单次前向传播即可预测图像中的目标位置和类别。以下是SSD模型的详细介绍: 1. SSD概述 SSD是由Wei Liu等人在2015年提出的,其核心思想是在不同尺度的特征图上进行目标检测。SSD利用了深度卷积网络(如VGGNet)提取的多尺度特征来进行目标检测,这使得它能够有效地检测不同尺寸的目标。 2. SSD的关键特性 多尺度特征图:SSD在网络的不同层级上使用特征图,这样可以捕捉到不同大小的目标。 先验框(Prior Boxes):在每个特征图的每个位置,SSD会生成多个不同尺寸和宽高比的先验框,这些框用于预测目标的存在及其位置。 单次传播:与需要多次迭代计算的检测方法不同,SSD只需要网络的单次前向传播即可完成检测。 边框回归和分类:SSD同时预测每个先验框的类别和边界框位置,使用不同的卷积层来预测类别得分和边界框偏移。 3. SSD的网络结构 SSD的网络结构通常基于一个强大的图像分类网络,如VGGNet。在SSD中

文件下载

资源详情

[{"title":"( 62 个子文件 163.08MB ) 目标检测模型-SSD检测模型-Pytorch版本","children":[{"title":"pascal_voc_classes.json <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"src","children":[{"title":"utils.py <span style='color:#111;'> 25.56KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 150B </span>","children":null,"spread":false},{"title":"nvidia_ssdpyt_fp32.pt <span style='color:#111;'> 174.91MB </span>","children":null,"spread":false},{"title":"res50_backbone.py <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"ssd_model.py <span style='color:#111;'> 9.34KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"ssd_model.cpython-36.pyc <span style='color:#111;'> 6.49KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 444B </span>","children":null,"spread":false},{"title":"res50_backbone.cpython-36.pyc <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"utils.cpython-36.pyc <span style='color:#111;'> 15.40KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data","children":[{"title":"VOCdevkit","children":[{"title":"VOC2012","children":[{"title":"ImageSets","children":[{"title":"Main","children":null,"spread":false}],"spread":true},{"title":"Annotations","children":null,"spread":false},{"title":"JPEGImages","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"ssd512","children":[{"title":"layers","children":[{"title":"__init__.py <span style='color:#111;'> 48B </span>","children":null,"spread":false},{"title":"modules","children":[{"title":"__init__.py <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"multibox_loss.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"l2norm.py <span style='color:#111;'> 733B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"l2norm.cpython-36.pyc <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"multibox_loss.cpython-36.pyc <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 362B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"box_utils.py <span style='color:#111;'> 9.07KB </span>","children":null,"spread":false},{"title":"functions","children":[{"title":"__init__.py <span style='color:#111;'> 97B </span>","children":null,"spread":false},{"title":"prior_box.py <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"detection.py <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"prior_box.cpython-36.pyc <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"detection.cpython-36.pyc <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 359B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"__pycache__","children":[{"title":"box_utils.cpython-36.pyc <span style='color:#111;'> 7.78KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 283B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"__pycache__","children":[{"title":"ssd512.cpython-36.pyc <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"ssd512.py <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false}],"spread":true},{"title":"res50_ssd.png <span style='color:#111;'> 193.72KB </span>","children":null,"spread":false},{"title":"save_weights","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 6.96KB </span>","children":null,"spread":false},{"title":"results20230619-151220.txt <span style='color:#111;'> 945B </span>","children":null,"spread":false},{"title":"my_dataset.py <span style='color:#111;'> 9.06KB </span>","children":null,"spread":false},{"title":"summary.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"draw_box_utils.py <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"results20230619-123605.txt <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"train_multi_GPU.py <span style='color:#111;'> 10.83KB </span>","children":null,"spread":false},{"title":"loss_and_lr20230619-144142.png <span style='color:#111;'> 27.62KB </span>","children":null,"spread":false},{"title":"results20230619-161832.txt <span style='color:#111;'> 353B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 78B </span>","children":null,"spread":false},{"title":"train_ssd300.py <span style='color:#111;'> 9.02KB </span>","children":null,"spread":false},{"title":"validation.py <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"mAP.png <span style='color:#111;'> 20.49KB </span>","children":null,"spread":false},{"title":"plot_curve.py <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"transforms.cpython-36.pyc <span style='color:#111;'> 6.22KB </span>","children":null,"spread":false},{"title":"plot_curve.cpython-36.pyc <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"my_dataset.cpython-36.pyc <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false}],"spread":false},{"title":"train_utils","children":[{"title":"__init__.py <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"distributed_utils.py <span style='color:#111;'> 10.37KB </span>","children":null,"spread":false},{"title":"group_by_aspect_ratio.py <span style='color:#111;'> 7.36KB </span>","children":null,"spread":false},{"title":"train_eval_utils.py <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"coco_utils.cpython-36.pyc <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"distributed_utils.cpython-36.pyc <span style='color:#111;'> 9.75KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 549B </span>","children":null,"spread":false},{"title":"group_by_aspect_ratio.cpython-36.pyc <span style='color:#111;'> 6.99KB </span>","children":null,"spread":false},{"title":"train_eval_utils.cpython-36.pyc <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"coco_eval.cpython-36.pyc <span style='color:#111;'> 9.46KB </span>","children":null,"spread":false}],"spread":false},{"title":"coco_eval.py <span style='color:#111;'> 11.78KB </span>","children":null,"spread":false},{"title":"coco_utils.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"record_mAP.txt <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"results20230619-164940.txt <span style='color:#111;'> 824B </span>","children":null,"spread":false},{"title":"predict_test.py <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明