[{"title":"( 40 个子文件 100.81MB ) 40篇ICLR2020计算机视觉开源论文合集.zip","children":[{"title":"ATOMNAS FINE-GRAINED END-TO-END NEURAL ARCHITECTURE SEARCH.pdf <span style='color:#111;'> 487.10KB </span>","children":null,"spread":false},{"title":"SEMANTICALLY-GUIDED REPRESENTATION LEARN- ING FOR SELF-SUPERVISED MONOCULAR DEPTH.pdf <span style='color:#111;'> 4.47MB </span>","children":null,"spread":false},{"title":"Behaviour Suite for Reinforcement Learning.pdf <span style='color:#111;'> 2.91MB </span>","children":null,"spread":false},{"title":"REAL OR NOT REAL, THAT IS THE QUESTION.pdf <span style='color:#111;'> 6.44MB </span>","children":null,"spread":false},{"title":"AUGMIX A SIMPLE DATA PROCESSING METHOD TO IMPROVE ROBUSTNESS AND UNCERTAINTY.pdf <span style='color:#111;'> 6.28MB </span>","children":null,"spread":false},{"title":"CAPSULES WITH INVERTED DOT-PRODUCT ATTENTION ROUTING.pdf <span style='color:#111;'> 1.58MB </span>","children":null,"spread":false},{"title":"NEURAL ARITHMETIC UNITS.pdf <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false},{"title":"STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS.pdf <span style='color:#111;'> 2.17MB </span>","children":null,"spread":false},{"title":"NAS-BENCH-201 EXTENDING THE SCOPE OF RE- PRODUCIBLE NEURAL ARCHITECTURE SEARCH.pdf <span style='color:#111;'> 3.32MB </span>","children":null,"spread":false},{"title":"A NEURAL DIRICHLET PROCESS MIXTURE MODEL FOR TASK-FREE CONTINUAL LEARNING.pdf <span style='color:#111;'> 973.04KB </span>","children":null,"spread":false},{"title":"DROPEDGE TOWARDS DEEP GRAPH CONVOLU- TIONAL NETWORKS ON NODE CLASSIFICATION.pdf <span style='color:#111;'> 704.49KB </span>","children":null,"spread":false},{"title":"FAST NEURAL NETWORK ADAPTATION VIA PARAME- TER REMAPPING AND ARCHITECTURE SEARCH.pdf <span style='color:#111;'> 3.00MB </span>","children":null,"spread":false},{"title":"BATCHENSEMBLE AN ALTERNATIVE APPROACH TO EFFICIENT ENSEMBLE AND LIFELONG LEARNING.pdf <span style='color:#111;'> 813.96KB </span>","children":null,"spread":false},{"title":"Generative Models for Effective ML on Private, Decentralized Datasets.pdf <span style='color:#111;'> 667.84KB </span>","children":null,"spread":false},{"title":"DEFORMABLE KERNELS ADAPTING EFFECTIVE RE- CEPTIVE FIELDS FOR OBJECT DEFORMATION.pdf <span style='color:#111;'> 5.12MB </span>","children":null,"spread":false},{"title":"PSEUDO-LIDAR ACCURATE DEPTH FOR 3D OBJECT DETECTION IN AUTONOMOUS DRIVING.pdf <span style='color:#111;'> 6.68MB </span>","children":null,"spread":false},{"title":"PITFALLS OF IN-DOMAIN UNCERTAINTY ESTIMATION AND ENSEMBLING IN DEEP LEARNING.pdf <span style='color:#111;'> 3.89MB </span>","children":null,"spread":false},{"title":"MUTUAL MEAN-TEACHING PSEUDO LABEL REFINERY FOR UNSUPERVISED DO- MAIN ADAPTATION ON PERSON RE-IDENTIFICATION.pdf <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false},{"title":"Fooling Detection Alone is Not Enough- Adversarial Attack against Multiple Object Tracking.pdf <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"LEARNING TO EXPLORE USING ACTIVE NEURAL SLAM.pdf <span style='color:#111;'> 3.88MB </span>","children":null,"spread":false},{"title":"NAS EVALUATION IS FRUSTRATINGLY HARD.pdf <span style='color:#111;'> 1.08MB </span>","children":null,"spread":false},{"title":"DIFFTAICHI DIFFERENTIABLE PROGRAMMING FOR PHYSICAL SIMULATION.pdf <span style='color:#111;'> 4.24MB </span>","children":null,"spread":false},{"title":"On the Relationship between Self-Attention and Convolutional Layers.pdf <span style='color:#111;'> 1.53MB </span>","children":null,"spread":false},{"title":"CONTRASTIVE LEARNING OF STRUCTURED WORLD MODELS.pdf <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false},{"title":"ON THE VARIANCE OF THE ADAPTIVE LEARNING RATE AND BEYOND.pdf <span style='color:#111;'> 2.74MB </span>","children":null,"spread":false},{"title":"NETWORK DECONVOLUTION.pdf <span style='color:#111;'> 3.09MB </span>","children":null,"spread":false},{"title":"COMPOSITION-BASED MULTI-RELATIONAL GRAPH CONVOLUTIONAL NETWORKS.pdf <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false},{"title":"QUERY2BOX REASONING OVER KNOWLEDGE GRAPHS IN VECTOR SPACE USING BOX EMBEDDINGS.pdf <span style='color:#111;'> 576.55KB </span>","children":null,"spread":false},{"title":"MEASURING COMPOSITIONAL GENERALIZATION A COMPREHENSIVE METHOD ON REALISTIC DATA.pdf <span style='color:#111;'> 2.06MB </span>","children":null,"spread":false},{"title":"FASTERSEG SEARCHING FOR FASTER REAL-TIME SEMANTIC SEGMENTATION.pdf <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"Meta-Learning without Memorization.pdf <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"U-GAT-IT Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation.pdf <span style='color:#111;'> 9.13MB </span>","children":null,"spread":false},{"title":"UNDERSTANDING AND ROBUSTIFYING DIFFERENTIABLE ARCHITECTURE SEARCH.pdf <span style='color:#111;'> 2.50MB </span>","children":null,"spread":false},{"title":"DEEP SEMI-SUPERVISED ANOMALY DETECTION.pdf <span style='color:#111;'> 2.06MB </span>","children":null,"spread":false},{"title":"KALEIDOSCOPE AN EFFICIENT, LEARNABLE REPRE- SENTATION FOR ALL STRUCTURED LINEAR MAPS.pdf <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"Weakly Supervised Disentanglement with Guarantees.pdf <span style='color:#111;'> 7.37MB </span>","children":null,"spread":false},{"title":"Contrastive Representation Distillation.pdf <span style='color:#111;'> 5.89MB </span>","children":null,"spread":false},{"title":"ONCE-FOR-ALL TRAIN ONE NETWORK AND SPECIALIZE IT FOR EFFICIENT DEPLOYMENT.pdf <span style='color:#111;'> 3.20MB </span>","children":null,"spread":false},{"title":"TOWARDS STABILIZING BATCH STATISTICS IN BACKWARD PROPAGATION OF BATCH NORMALIZATION.pdf <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false},{"title":"EMPIRICAL BAYES TRANSDUCTIVE META-LEARNING WITH SYNTHETIC GRADIENTS.pdf <span style='color:#111;'> 772.92KB </span>","children":null,"spread":false}],"spread":true}]