DeepFam:基于深度学习的蛋白质家族建模和预测的免比对方法-源码

上传者: 42139042 | 上传时间: 2021-11-19 10:36:55 | 文件大小: 3.11MB | 文件类型: -
关于DeepFam DeepFam是一种基于深度学习的无比对蛋白质功能预测方法。 DeepFam首先通过卷积层从原始序列中提取保守区域的特征,然后根据这些特征进行预测。 特征 免比对:不需要多重或成对序列比对来训练族模型。 取而代之的是,通过卷积单元和1-max池训练家庭中局部保留的区域。 卷积单元的工作方式与PSSM类似。 利用可变大小的卷积单元(多尺度卷积单元)来训练通常长度各异的特定于家庭的保守区域。 安装 DeepFam是在库中实现的。 CPU和GPU机器均受支持。 有关安装Tensorflow的详细说明,请参阅的。 要求 的Python:2.7 Tensorflow:超过1.0 用法 首先,克隆存储库或下载压缩的源代码文件。 $ git clone https://github.com/bhi-kimlab/DeepFam.git $ cd DeepFam 您可以通过帮

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明