关于DeepFam DeepFam是一种基于深度学习的无比对蛋白质功能预测方法。 DeepFam首先通过卷积层从原始序列中提取保守区域的特征,然后根据这些特征进行预测。 特征 免比对:不需要多重或成对序列比对来训练族模型。 取而代之的是,通过卷积单元和1-max池训练家庭中局部保留的区域。 卷积单元的工作方式与PSSM类似。 利用可变大小的卷积单元(多尺度卷积单元)来训练通常长度各异的特定于家庭的保守区域。 安装 DeepFam是在库中实现的。 CPU和GPU机器均受支持。 有关安装Tensorflow的详细说明,请参阅的。 要求 的Python:2.7 Tensorflow:超过1.0 用法 首先,克隆存储库或下载压缩的源代码文件。 $ git clone https://github.com/bhi-kimlab/DeepFam.git $ cd DeepFam 您可以通过帮
1