基于最大联合条件互信息的特征选择方法(MCJMI).pdf

上传者: 39841848 | 上传时间: 2021-10-11 14:36:12 | 文件大小: 1.25MB | 文件类型: -
在高维数据如图像数据、基因数据、文本数据等的分析过程中,当样本存在冗余特征时会大大增加问题分析复杂难度,因此在数据分析前从中剔除冗余特征尤为重要。基于互信息(MI)的特征选择方法能够有效地降低数据维数,提高分析结果精度,但是,现有方法在特征选择过程中评判特征是否冗余的标准单一,无法合理排除冗余特征,最终影响分析结果。为此,提出一种基于最大联合条件互信息的特征选择方法(MCJMI)。MCJMI选择特征时考虑整体联合互信息与条件互信息两个因素,两个因素融合增强特征选择约束。在平均预测精度方面,MCJMI与信息增益(IG)、最小冗余度最大相关性( mRMR)特征选择相比提升了6个百分点;与联合互信息(JMI)、最大化联合互信息(JMIM)相比提升了2个百分点;与LW向前搜索方法( SFS-LW)相比提升了1个百分点。在稳定性方面,MCJMI稳定性达到了0.92,优于JMI、JMIM、SFS-LW方法。实验结果表明MCJMI能够有效地提高特征选择的准确率与稳定性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明