S函数,双曲几何的谱函数和顶点算子及其在Weyl和正交群不变量的结构中的应用

上传者: 38651365 | 上传时间: 2024-03-01 23:35:26 | 文件大小: 487KB | 文件类型: PDF
在本文中,我们分析了量子同源不变性(slN链同源性的Poincaré多项式)。 在正确地知道适当拓扑空间的同调性的大小的情况下,可以大大简化基于Euler-Poincaré公式的Kovanov-Rozansky型同源性的计算过程。 我们根据双曲几何的对称和谱函数来表达经典群的不可约张量表示的形式特征。 根据Labastida–Mariño–Ooguri–Vafa猜想,我们以Ruelle谱函数(无结,无结和链结的情况具有无限积)形式表示了Chern-Simons分区函数的表示形式。 被考虑)。 我们还为正交的Chern-Simons分区函数导出了一个无限积公式,并分析了无限积结构的奇异性和对称性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明