具体介绍sklearn库中:主成分分析(PCA)的参数、属性、方法

上传者: 38568548 | 上传时间: 2021-04-14 22:04:51 | 文件大小: 165KB | 文件类型: PDF
转载请注明出处:https://editor.csdn.net/md?articleId=104839136 文章目录主成分分析(PCA)Sklearn库中PCA一、参数说明(Parameters)二、属性(Attributes)三、方法(Methods)四、示例(Sample)五、参考资料(Reference data) 主成分分析(PCA) 主成分分析(Principal components analysis,以下简称PCA)的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征(新的坐标系)。这k维特征称为主元,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明