机器学习+决策树+python实现对率回归决策树

上传者: 36949278 | 上传时间: 2022-04-28 16:06:41 | 文件大小: 362KB | 文件类型: ZIP
概述 调用sklearn.linear_model中的LogisticRegression库,尝试通过对率回归对离散数据进行划分,对每个属性进行预测,选取正确率最大的属性作为根节点,并对该节点的每个属性取值进行划分选择,依此类推,最终绘制一棵决策树。 程序功能 对于给定西瓜数据集3.0,将字符串类型的属性取值转换为数值类型以便模型进行训练,并将连续属性离散化以便选取划分点,通过正确率来选取根节点,最终得到决策树数组。通过dealanddraw(n0, pngname)函数将数组转化为字典类型,绘制决策树,将决策树以图片形式保存在程序的同一目录下。 收获 通过该代码读者能够掌握机器学习课程中对率回归决策树的基本绘制方法,能够根据自己的需求快速的更换数据集,具有一定的应用价值。 不足 对于正确率相同的节点,选取优先遍历的属性作为根节点,与基于信息增益进行划分选择的方法相比,可知两种方法绘制的决策树正确率均为100%,但对率回归方法容易忽略在同一正确率下划分较佳的节点,从而使决策树层数增多,变得更加复杂。

文件下载

资源详情

[{"title":"( 4 个子文件 362KB ) 机器学习+决策树+python实现对率回归决策树","children":[{"title":"4_5.png <span style='color:#111;'> 398.71KB </span>","children":null,"spread":false},{"title":"4_5.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"createPlot.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"watermelon3.txt <span style='color:#111;'> 825B </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明