machine learning cheat sheet

上传者: chirsw | 上传时间: 2022-12-16 07:38:08 | 文件大小: 3.7MB | 文件类型: ZIP
python、numpy、pandas、jupyter、keras、matplotlib、pyspark、scikit-learn、scipy、seaborn的cheat sheet

文件下载

资源详情

[{"title":"( 15 个子文件 3.7MB ) machine learning cheat sheet","children":[{"title":"cheat_sheet","children":[{"title":"Jupyter Notebook.pdf <span style='color:#111;'> 785.45KB </span>","children":null,"spread":false},{"title":"Pandas.pdf <span style='color:#111;'> 226.76KB </span>","children":null,"spread":false},{"title":"Matplotlib.pdf <span style='color:#111;'> 224.70KB </span>","children":null,"spread":false},{"title":"Dataquest-Python Basics.pdf <span style='color:#111;'> 81.75KB </span>","children":null,"spread":false},{"title":"Keras.pdf <span style='color:#111;'> 136.66KB </span>","children":null,"spread":false},{"title":"Dataquest-Python - Intermediate.pdf <span style='color:#111;'> 64.41KB </span>","children":null,"spread":false},{"title":"Seaborn.pdf <span style='color:#111;'> 623.97KB </span>","children":null,"spread":false},{"title":"NumPy.pdf <span style='color:#111;'> 176.36KB </span>","children":null,"spread":false},{"title":"Dataquest-Pandas.pdf <span style='color:#111;'> 83.26KB </span>","children":null,"spread":false},{"title":"Bokeh.pdf <span style='color:#111;'> 676.22KB </span>","children":null,"spread":false},{"title":"Dataquest-Numpy.pdf <span style='color:#111;'> 59.71KB </span>","children":null,"spread":false},{"title":"SciPy.pdf <span style='color:#111;'> 145.14KB </span>","children":null,"spread":false},{"title":"PySpark.pdf <span style='color:#111;'> 678.26KB </span>","children":null,"spread":false},{"title":"CheatSheet.png <span style='color:#111;'> 149.48KB </span>","children":null,"spread":false},{"title":"Scikit-Learn.pdf <span style='color:#111;'> 145.68KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明