SRCNN,,matlab实现

上传者: chenxinsteven | 上传时间: 2019-12-21 19:33:41 | 文件大小: 84.93MB | 文件类型: rar
这里主要讲深度学习用在超分辨率重建上的开山之作SRCNN。超分辨率技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备、卫星图像和医学影像等领域都有重要的应用价值。SR可分为两类:从多张低分辨率图像重建出高分辨率图像和从单张低分辨率图像重建出高分辨率图像。基于深度学习的SR,主要是基于单张低分辨率的重建方法,即Single Image Super-Resolution (SISR)。 SR方法主要可以分为四种模型:基于边缘,基于图像统计,基于样本(基于补丁)的方法。本文的SRCNN网络结构非常简单,仅仅只有三层网络就是实现了SR。网络结构如下图所示:

文件下载

资源详情

[{"title":"( 123 个子文件 84.93MB ) SRCNN,,matlab实现","children":[{"title":"store2hdf5.m <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 23B </span>","children":null,"spread":false},{"title":"generate_test.m <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"SRCNN_solver.prototxt <span style='color:#111;'> 566B </span>","children":null,"spread":false},{"title":"saveFilters.m <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明