[{"title":"( 35 个子文件 128.99MB ) tensorflow实现LeNet-5的卷积神经网络","children":[{"title":"conv_pool_mnist","children":[{"title":"mnist","children":[{"title":"data","children":[{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"mnist_inference.py <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"model.ckpt-4101.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29801.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-4101 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"checkpoint <span style='color:#111;'> 637B </span>","children":null,"spread":false},{"title":"model.ckpt-4201.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-4401.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-4301 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-29701.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29801 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-4001.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29601.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29701 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"model.ckpt-4001 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-4401 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-4201 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-29501.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29901.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29501 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-29601 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-4301.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29901 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false}],"spread":false},{"title":"mnist_eval.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"mnist_train.py <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"mnist_train.pyc <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"mnist_validation.py <span style='color:#111;'> 215B </span>","children":null,"spread":false},{"title":"mnist_inference.pyc <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]