tensorflow实现LeNet-5的卷积神经网络

上传者: a3765421 | 上传时间: 2019-12-21 18:44:24 | 文件大小: 128.99MB | 文件类型: zip
里面包含mnist数据集,不用再去下载,程序直接能用。由于model文件夹里有训练好的模型,可以直接跑测试,由于只跑了6000轮训练,不到完整的3W轮,所以只达到了98.8%,你们可以自己训练完一整套,能达到99.*%的准确率。若不满意,那自己调超参数 (初试的指数衰减率 和 每次衰减比率),好了,下次上传迁移学习的代码,下回见,

文件下载

资源详情

[{"title":"( 35 个子文件 128.99MB ) tensorflow实现LeNet-5的卷积神经网络","children":[{"title":"conv_pool_mnist","children":[{"title":"mnist","children":[{"title":"data","children":[{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"mnist_inference.py <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"model.ckpt-4101.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29801.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-4101 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"checkpoint <span style='color:#111;'> 637B </span>","children":null,"spread":false},{"title":"model.ckpt-4201.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-4401.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-4301 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-29701.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29801 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-4001.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29601.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29701 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"model.ckpt-4001 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-4401 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-4201 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-29501.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29901.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29501 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-29601 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"model.ckpt-4301.meta <span style='color:#111;'> 84.33KB </span>","children":null,"spread":false},{"title":"model.ckpt-29901 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false}],"spread":false},{"title":"mnist_eval.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"mnist_train.py <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"mnist_train.pyc <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"mnist_validation.py <span style='color:#111;'> 215B </span>","children":null,"spread":false},{"title":"mnist_inference.pyc <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明