神经网络:强化学习高频面试题整理

上传者: Sn_Keys | 上传时间: 2022-06-06 13:05:18 | 文件大小: 1.72MB | 文件类型: RAR
本篇整理强化学习中的常见面试题,在面试前对强化学习的基础理论有深入的理解和认识,需要掌握常见算法的基本思想、推导过程。 公式很多,如贝尔曼方程和贝尔曼最优方程这里估计已经被绕晕了,所以会觉得很难,更不要说把目前主流算法都掌握好了,像DDPG、TRPO、PPO等算法的推导过程基本都有一定的难度。 学习资料: 1、英文书:Sutton的Reinforcement Learning: An Introduction,比较经典,总体讲的比较通俗易懂,可能就是英文不太好懂 2、视频教程:David Silver的视频教程,然后参考叶强的中文笔记来看,如果不喜欢英文,可以找李宏毅的视频来听 3、中文书籍:郭宪的《深入浅出强化学习原理入门》 4、英文文档:https://spinningup.openai.com/en/latest/index.html 5、论文:DDPG、TRPO、SAC等都可以找原论文读一下 6、源码:学一个算法要把它的框架搞懂,输入和输出是啥、网络的目标函数、参数怎么更新的都要知道,所以建议也把源码看看

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明