基于ARIMA自回归模型对法国香槟的月销售额预测python实现完整源码+数据+详细注释.zip

上传者: DeepLearning_ | 上传时间: 2022-12-02 14:29:50 | 文件大小: 22KB | 文件类型: ZIP
基于ARIMA自回归模型对法国香槟的月销售额预测python实现完整源码+数据+详细注释 包含 1.如何训练Embidding层 2.在Embidding层使用已训练好的词向量_glove 3.数据的初步 可视化分析;4.手动配置ARIMA参数;5.手动配置差分参数;6.网格搜索配置ARIMA参数;7.残差后自相关检测;8.残差修正;9.检查残差预测误差;10.验证模型;11.进行预测;12.数据集分割等

文件下载

资源详情

[{"title":"( 27 个子文件 22KB ) 基于ARIMA自回归模型对法国香槟的月销售额预测python实现完整源码+数据+详细注释.zip","children":[{"title":"基于ARIMA自回归模型对法国香槟的月销售额预测python实现完整源码+数据+详细注释","children":[{"title":"6.2网格搜索配置ARIMA参数.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"6.3残差后自相关检测.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"6.1p q参数选择.py <span style='color:#111;'> 485B </span>","children":null,"spread":false},{"title":"validation.csv <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":"4基准测试.py <span style='color:#111;'> 678B </span>","children":null,"spread":false},{"title":"5数据的初步可视化分析","children":[{"title":"validation.csv <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":"线图.py <span style='color:#111;'> 123B </span>","children":null,"spread":false},{"title":"密度图.py <span style='color:#111;'> 204B </span>","children":null,"spread":false},{"title":"champagne.csv <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"盒子和晶须图.py <span style='color:#111;'> 326B </span>","children":null,"spread":false},{"title":"stationary.csv <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"dataset.csv <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"摘要统计.py <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"季节线图.py <span style='color:#111;'> 397B </span>","children":null,"spread":false}],"spread":true},{"title":"7.2进行预测.py <span style='color:#111;'> 598B </span>","children":null,"spread":false},{"title":"model.pkl <span style='color:#111;'> 6.26KB </span>","children":null,"spread":false},{"title":"6.1手动配置差分参数.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"数据集分割.py <span style='color:#111;'> 309B </span>","children":null,"spread":false},{"title":"6.1手动配置ARIMA参数.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"7.3验证模型.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"model_bias.npy <span style='color:#111;'> 136B </span>","children":null,"spread":false},{"title":"champagne.csv <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"stationary.csv <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"dataset.csv <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"6.3检查残差预测误差.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"6.3残差修正.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"7.1完成模型.py <span style='color:#111;'> 949B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明