这里采用沪深300指数数据,时间跨度是2010年10月10号至今,选择每天的最高价格。假设当天最高价依赖当天的前n(如30)天的沪深300的最高价格。用LSTM模型来捕捉最高价的时序信息,通过模型训练,使之学会用前n天的最高价,来判断当天的最高价。
2023-04-16 20:26:26 88KB LSTM
1
在时间序列预测问题中,建立LSTM模型,采用python语言代码实现
2023-04-14 23:11:57 388KB lstm python 软件/插件
1
神经网络LSTM 时间预测MATLAB源码,RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的。在传统的神经网络模型中,从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多关于时间序列的问题却无能无力。
2023-04-14 10:23:45 13KB 神经网络 MATLAB源码 LSTM时间预测 RNN
6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1
孕妇的产前体检是围产医学的重要组成部分,产前预测胎儿体重可以为判断胎儿健康发育提供准确的参考.孕妇的多次体检记录在孕周时间上有不均匀时间间隔分布的特点.本研究对不均匀时间间隔的处理提出了LSTM模型的变种——变长时间间隔的LSTM模型(Variable Time Interval LSTM,VTI-LSTM).本研究数据来源于2015~2018年多家妇产科医院的10 473个孕妇的122 462条体检记录.实验比较了传统的公式估算法以及GBDT,MLP,SVR,RNN,LSTM,VTI-LSTM等机器学习方法的胎儿体重预测结果,其中,VTI-LSTM在低体重和巨大儿的预测上取得良好的预测结果.
1
对RNN及其改进版本LSTM的的介绍,和其中的运行机制的说明 RNN的结构 口简单来看,把序列按时间展开 为了体现RNN的循环性,可以将多层fod起来
2023-04-08 17:02:09 2.81MB 深度学习 LSTM
1
BP-LSTM-Attention-transformer,含数据,可直接运行 文件夹目录如下: BP data bp_anomaly.py lstm+attention B0005.csv lstm_attention_battery.py transformer pue.csv pue_transformer.py 多输出 Data.csv lstm_50.py 如有问题可随时私聊我解决,包售后 BP文件夹是多分类和二分类问题,包括focalloss lstm+attention是lstm加注意力机制 transformer是介绍时间序列预测问题 lstm_50是时间序列预测的多输出问题 https://data-mining.blog.csdn.net/ 我的博客有相应的介绍
2023-04-07 14:32:17 7.16MB BP LSTM Attention transformer
基于 Keras LSTM 的中文评论情感分析(附完整代码).zip
2023-04-05 22:15:48 7.29MB Keras LSTM
1
LSTM预测气温.ipynb
2023-04-04 17:50:12 110KB
1
对于许多研究人员和审查员来说,确定股票价格的专业性一直是一项麻烦的任务。 事实上,金融专家对股票价值预测的检查领域非常感兴趣。 对于体面而有用的投机,众多投机者对股市未来走势了如指掌。 强大而强大的股票市场预测框架可帮助交易商、投机者和专家提供重要数据,例如股票市场的未来走向。 这项工作提出了一种循环神经网络 (RNN) 和长短期记忆 (LSTM) 方法来处理预期的股市文件。
2023-04-04 14:57:56 154KB Artificial Neural Network
1